搜索

x
中国物理学会期刊

具有无穷共存吸引子的简单忆阻混沌系统的分析与实现

CSTR: 32037.14.aps.71.20220593

Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors

CSTR: 32037.14.aps.71.20220593
PDF
HTML
导出引用
  • 利用忆阻器构建特殊混沌系统是非常有趣且充满意义的, 本文提出了一个存在无穷共存吸引子的四维忆阻混沌系统, 该系统的形式较为简单却能够表现出复杂的动力学行为. 本文利用数值仿真手段对系统进行深入研究, 基于分岔图展现了参数影响下系统动力学行为演化过程, 发现系统在不同的参数下, 能够产生丰富的混沌吸引子与周期吸引子, 在相平面图中观测到不同初始值下共存的无穷多形态各异的周期、混沌吸引子, 且系统的状态变量的震荡幅度与初始值密切相关. 最后, 在电路实验中观测到与数值仿真一致的结果, 说明了系统的存在性与可行性.

     

    Using memristors to construct special chaotic systems is highly interesting and meaningful. A simple four-dimensional memristive chaotic system with an infinite number of coexisting attractors is proposed in this paper, which has a relatively simple form but demonstrates complex dynamical behavior. Here, we use digital simulations to further investigate the system and utilize the bifurcation diagrams to describe the evolution of the dynamical behavior of the system with the influence of parameters. We find that the system can generate an abundance of chaotic and periodic attractors under different parameters. The amplitudes of the oscillations of the state variables of the system are closely dependent on the initial values. In addition, the experimental results of the circuit are consistent with the digital simulations, proving the existence and feasibility of this memristive chaotic system.

     

    目录

    /

    返回文章
    返回