搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有无穷共存吸引子的简单忆阻混沌系统的分析与实现

秦铭宏 赖强 吴永红

引用本文:
Citation:

具有无穷共存吸引子的简单忆阻混沌系统的分析与实现

秦铭宏, 赖强, 吴永红

Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors

Qin Ming-Hong, Lai Qiang, Wu Yong-Hong
PDF
HTML
导出引用
  • 利用忆阻器构建特殊混沌系统是非常有趣且充满意义的, 本文提出了一个存在无穷共存吸引子的四维忆阻混沌系统, 该系统的形式较为简单却能够表现出复杂的动力学行为. 本文利用数值仿真手段对系统进行深入研究, 基于分岔图展现了参数影响下系统动力学行为演化过程, 发现系统在不同的参数下, 能够产生丰富的混沌吸引子与周期吸引子, 在相平面图中观测到不同初始值下共存的无穷多形态各异的周期、混沌吸引子, 且系统的状态变量的震荡幅度与初始值密切相关. 最后, 在电路实验中观测到与数值仿真一致的结果, 说明了系统的存在性与可行性.
    Using memristors to construct special chaotic systems is highly interesting and meaningful. A simple four-dimensional memristive chaotic system with an infinite number of coexisting attractors is proposed in this paper, which has a relatively simple form but demonstrates complex dynamical behavior. Here, we use digital simulations to further investigate the system and utilize the bifurcation diagrams to describe the evolution of the dynamical behavior of the system with the influence of parameters. We find that the system can generate an abundance of chaotic and periodic attractors under different parameters. The amplitudes of the oscillations of the state variables of the system are closely dependent on the initial values. In addition, the experimental results of the circuit are consistent with the digital simulations, proving the existence and feasibility of this memristive chaotic system.
      通信作者: 赖强, laiqiang87@126.com
    • 基金项目: 国家自然科学基金(批准号: 61961019)、江西省自然科学基金(批准号: 20202ACBL212003)和湖北省自然科学基金(批准号: 2020CFB546)资助的课题.
      Corresponding author: Lai Qiang, laiqiang87@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61961019), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202ACBL212003), and the Natural Science Foundation of Hubei Province, China (Grant No. 2020CFB546).
    [1]

    Chua L O 1971 IEEE Trans. Circuits Theor. 18 507Google Scholar

    [2]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450131Google Scholar

    [3]

    鲜永菊, 夏诚, 钟德, 徐昌彪 2019 控制理论与应用 36 262Google Scholar

    Xian Y J, Xia C, Zhong D, Xu C B 2019 Control Theory Appl. 36 262Google Scholar

    [4]

    Li C B, Lu T N, Chen G R, Xing H Y 2019 Chaos 29 051102Google Scholar

    [5]

    Lai Q, Wan Z Q, Kuate P D K 2020 Electron. Lett. 56 1044Google Scholar

    [6]

    颜闽秀, 徐辉 2021 计算物理 38 244Google Scholar

    Yan M X, Xu H 2021 Chin. J. Comput. Phys. 38 244Google Scholar

    [7]

    Lai Q, Kuate P D K, Liu F, Liu F, Iu H H C 2019 IEEE Trans. Circuits Syst. Express Briefs 67 1129Google Scholar

    [8]

    Lai Q 2021 Int. J. Bifurcation Chaos 31 2150013Google Scholar

    [9]

    耿睿, 李中奇, 杨辉 2021 华东交通大学学报 38 61Google Scholar

    Geng R, Li Z Q, Yang H 2021 J. East China Jiaotong Univ. 38 61Google Scholar

    [10]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [11]

    Itoh M, Chua L O 2008 Int. J. Bifurcation Chaos 18 3183Google Scholar

    [12]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417Google Scholar

    [13]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502Google Scholar

    [14]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [15]

    Lai Q, Wan Z Q, Kengne L K, Kuate P D K, Chen C Y 2020 IEEE Trans. Circuits Syst. Express Briefs 68 2197Google Scholar

    [16]

    李晓霞, 郑驰, 王雪, 曹樱子, 徐桂芝 2022 哈尔滨工业大学学报 54 163Google Scholar

    Li X X, Zheng C, Wang X, Cao Y Z, Xu G Z 2022 J. Harbin Eng. Univ. 54 163Google Scholar

    [17]

    Lai Q, Lai C, Kuate P D K, Li C B, He S B 2022 Int. J. Bifurcation Chaos 32 2250042Google Scholar

    [18]

    Lai Q, Wan Z Q, Zhang H, Chen G R 2022 IEEE Trans. Neural Networks Learn. Syst.Google Scholar

    [19]

    Lai Q, Lai C, Zhang H, Li C B 2022 Chaos, Solitons Fractals 158 112017Google Scholar

    [20]

    包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502Google Scholar

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502Google Scholar

    [21]

    Li C B, Sprott J C 2016 Optik 127 10389Google Scholar

    [22]

    孙佳钰 2021 硕士学位论文 (南京: 南京信息工程大学)

    Sun J Y 2021 M. S. Thesis (Nanjing: Nanjing University of Information Science and Technology) (in Chinese)

    [23]

    Huang L L, Wang Y L, Jiang Y C, Lei T F 2021 Math. Prob. Eng. 2021 7457220Google Scholar

    [24]

    Zhang X, Li C B, Chen Y D, Iu H H C Lei T F 2020 Chaos, Solitons Fractals 139 110000Google Scholar

    [25]

    Carr J 1981 Applications of Centre Manifold Theory (New York: Springer) pp1–50

    [26]

    史传宝, 王光义, 臧寿池 2017 杭州电子科技大学学报(自然科学版) 37 1Google Scholar

    Shi C B, Wang G Y, Zang S C 2017 J. Hangzhou Dianzi Univ. (Nat. Sci. ) 37 1Google Scholar

    [27]

    王伟, 曾以成, 陈争, 孙睿婷 2017 计算物理 34 747Google Scholar

    Wang W, Zeng Y C, Chen Z, Sun R T 2017 Chin. J. Comput. Phys. 34 747Google Scholar

  • 图 1  原系统(2)电路原理图及忆阻输出反馈控制电路图

    Fig. 1.  Circuit schematic of the original system (2) and circuit diagram of the memristor output feedback control term.

    图 2  参数$ a=1.6, b=0.5, p=0.2, q=0.1 $和初值$ [0.1, 0.1, 0.2, 0.5] $时系统的相平面图 (a)$ x \text- y $平面; (b)$ x\text- z $平面; (c)$ y \text- z $平面; (d)$ x \text- w $平面; (e)$ y \text- w $平面; (f)$ z \text- w $平面

    Fig. 2.  Phase portraits of the system with parameters $ a = 1.6, {\text{ }}b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $ and initial values $ [0.1, 0.1, 0.2, 0.5] $: (a)$ x \text- y $ plane; (b)$ x \text- z $ plane; (c)$ y \text- z $ plane; (d)$ x \text- w $ plane; (e)$ y \text- w $ plane; (f)$ z \text- w $ plane.

    图 3  参数$ b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $和初值$ [0.1, 0.1, 0.2, 0.5] $时系统随参数$ a \in [0, 10] $的分岔图(a)与Lyapunov指数谱(b)

    Fig. 3.  Bifurcation diagram (a) and Lyapunov exponent spectrum (b) for system parameters$ a \in [0, 10] $ with$b = 0.5, {\text{ }}p = 0.2, $$ {\text{ }}q = 0.1$ and initial values of $ [0.1, 0.1, 0.2, 0.5] $.

    图 4  系统参数为$ b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $, 初值为$ [0.1, 0.1, 0.2, 0.5] $时, 表2中不同$ a $值对应的$x \text- w$相平面图 (a) a = 0.1; (b) a = 0.15; (c) a = 0.155; (d) a = 0.2; (e) a = 1.6; (f) a = 9.1

    Fig. 4.  $x \text- w$ phase plane diagrams corresponding to different $ a $ values in Table 2 for system parameter $ b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $ and an initial value of $ [0.1, 0.1, 0.2, 0.5] $: (a) a = 0.1; (b) a = 0.15; (c) a = 0.155; (d) a = 0.2; (e) a = 1.6; (f) a = 9.1.

    图 5  系统参数为$a \;=\; 1.6, {\text{ }}b\; =\; 0.5, {\text{ }}q\; =\; 0.1$, 初值为$ [0.1, 0.1, 0.2, 0.5] $时, 系统参数$ p \in (0, 0.52] $的分岔图(a)与Lyapunov指数谱(b)

    Fig. 5.  Bifurcation diagram (a) with Lyapunov exponent spectrum (b) for system parameters$ p \in (0, 0.52] $ for $a = 1.6, {\text{ }}b = 0.5, $$ {\text{ }}q = 0.1$ and initial values of $ [0.1, 0.1, 0.2, 0.5] $.

    图 6  系统参数为$ a = 1.6, {\text{ }}b = 0.5, {\text{ }}p = 0.2 $, 初值为$ [0.1, 0.1, 0.2, 0.5] $时, 系统参数$ q \in [0.1, 0.16] $的分岔图(a)与Lyapunov指数谱(b)

    Fig. 6.  Bifurcation diagram (a) with Lyapunov exponent spectrum (b) for system parameters $ q \in [0.1, 0.16] $ with $a = 1.6, $$ {\text{ }}b = 0.5, {\text{ }}p = 0.2$and initial values of $ [0.1, 0.1, 0.2, 0.5] $.

    图 7  表3中的不同系统参数下的共存吸引子的$x {\text{-}} w$相平面图 (a) a = 1.6, b = 0.5, p = 0.2, q = 0.1; (b) a = 0.2, b = 0.5, p = 0.2, q = 0.1; (c) a = 6, b = 0.5, p = 0.2, q = 0.1; (d) a = 8, b = 0.5, p = 0.2, q = 0.1; (e) a = 2, b = 0.6, p = 0.5, q = 0.1; (f) a = 0.5, b = 0.5, p = 0.5, q = 0.1

    Fig. 7.  $x {\text{-}} w$ phase plane plots of coexisting attractors for different system parameters in Table 3: (a) a = 1.6, b = 0.5, p = 0.2, q = 0.1; (b) a = 0.2, b = 0.5, p = 0.2, q = 0.1; (c) a = 6, b = 0.5, p = 0.2, q = 0.1; (d) a = 8, b = 0.5, p = 0.2, q = 0.1; (e) a = 2, b = 0.6, p = 0.5, q = 0.1; (f) a = 0.5, b = 0.5, p = 0.5, q = 0.1.

    图 8  参数$a = 1.6, \;b = 0.5, \;p = 0.2, \;q = 0.1$时, 系统(3)在不同初始条件条件下的A, B系列多共存引子: (a)共存周期吸引子A1—A9; (b)共存混沌吸引子B1—B6

    Fig. 8.  The system (3) with parameters $a = 1.6, \;b = 0.5, \;p = 0.2, \;q = 0.1$ has multiple coexisting chaotic attractors of series A and B under different initial conditions: (a) Coexisting periodic attractors A1–A9; (b) coexisting chaotic attractors B1–B6.

    图 9  参数$ a = 1.6, {\text{ }}b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $和初始值$ [0.1, y(0), 0.2, 0.5] $时, 系统(3)随初始值$ y(0) \in [ - 1, 8] $的分岔图(a)与Lyapunov指数谱(b)

    Fig. 9.  Bifurcation diagram (a) of system (3) initial condition $ y(0) \in [ - 1, 8] $ for parameter $ a = 1.6, {\text{ }}b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $ and initial value $ [0.1, y(0), 0.2, 0.5] $ with Lyapunov exponential spectrum (b).

    图 10  系统(3)随初始值变化的分岔图 (a)参数$ a = 1.6, {\text{ }}b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $且初值为$ [0.1, y(0), 1, 7] $时, 系统初始条件$ y(0) \in [10,20] $的分岔图; (b)参数为$ a = 0.2, {\text{ }}b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $和初值为$ [0.1, 0.1, 0.2, w(0)] $(蓝色), $ [0.1, 0.1, 2, w(0)] $(紫色)时, 系统初始条件$ w(0) \in [ - 2, 4] $的分岔图

    Fig. 10.  Bifurcation diagram of system (3) with initial values: (a) Bifurcation diagram of system initial condition $ y(0) \in [10,20] $ for parameter $ a = 1.6, {\text{ }}b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $ with initial value $ [0.1, y(0), 1, 7] $; (b) bifurcation diagram of system initial condition $ w(0) \in [ - 2, 4] $ for parameter $ a = 0.2, {\text{ }}b = 0.5, {\text{ }}p = 0.2, {\text{ }}q = 0.1 $ and initial values $ [0.1, 0.1, 0.2, w(0)] $ (blue) and $ [0.1, 0.1, 2, w(0)] $ (purple).

    图 11  忆阻系统电路原理图

    Fig. 11.  Circuit schematic of the memristive chaotic system.

    图 12  电路实验结果图 (a)—(d) 示波器中$ x - y $, $ x - z $, $ y - z $, $ x - w $相平面图

    Fig. 12.  Plots of experimental results of the circuit: (a)–(d) the $ x - y $, $ x - z $, $ y - z $ and$ x - w $ phase planes in the oscilloscope respectively.

    表 1  系统(3)与部分同类型系统的对比

    Table 1.  Comparison of system (3) with some systems of the same type.

    系统原系统
    编号
    原系统中
    非线性项的个数
    新系统的
    总项数
    新系统中
    非线性项的个数
    文献
    编号
    系统AVB2164[22]
    系统BVB18275[23]
    系统CVB5388[24]
    本系统VB3172
    下载: 导出CSV

    表 2  系统参数为$ b = 0.5, p = 0.2, q = 0.1 $, 初值为$ [0.1, 0.1, 0.2, 0.5] $时, 不同$ a $值下吸引子类型及图像编号

    Table 2.  Attractor types and image numbers for different $ a $ values with system parameter$b = 0.5, p = 0.2, $$ q = 0.1$ and initial values $ [0.1, 0.1, 0.2, 0.5] $.

    参数$ a $的取值吸引子类型图像编号
    0.1周期-1
    0.15周期–2 图4(a)(c)
    0.155周期–4
    0.2混沌
    1.6混沌 图4(d)图4(f)
    9.1混沌
    下载: 导出CSV

    表 3  不同系统参数下系统共存吸引子类型与图像编号

    Table 3.  Coexistence of attractor types and image numbers for different system parameters.

    系统参数初始值吸引子类型图像编号
    a = 1.6, b = 0.5,
    p = 0.2, q = 0.1
    [0.1 0.1 0.2 0.5], [0.1 6.7 0.2 0.5]
    [0.1 6.9 0.2 0.5], [0.1 1.5 0.2 0.5]
    [0.1 6.5 0.2 0.5], [0.1 6.8 0.2 0.5]
    三个混沌吸引子与三个周期吸引子图7(a)
    a = 0.2, b = 0.5,
    p = 0.2, q = 0.1
    [0.1 0.1 0.2 1.2], [0.1 0.1 0.2 –0.5]
    [0.1 0.1 0.2 0.86], [0.1 0.1 0.2 0.5]
    [0.1 0.1 0.2 0.9]
    三个周期吸引子与两个混沌吸引子图7(b)
    a = 6, b = 0.5,
    p = 0.2, q = 0.1
    [0.1 0.1 0.2 0.5], [0.1 5.6 0.2 0.5]
    [0.1 2 0.2 0.5], [0.1 4 0.2 0.5]
    两个周期吸引子与两个混沌吸引子图7(c)
    a = 8, b = 0.5,
    p = 0.2, q = 0.1
    [0.1 –6 0.2 0.5], [0.1 6 0.2 0.5]
    [0.1 4 0.2 0.5], [0.1 3 0.2 0.5]
    三个周期吸引子与一个混沌吸引子图7(d)
    a = 2, b = 0.6,
    p = 0.5, q = 0.1
    [0.1 1 –0.2 1], [0.1 1 –0.2 –2]
    [0.1 1 –0.2 –1.2]
    三个混沌吸引子图7(e)
    a = 0.5, b = 0.5,
    p = 0.5, q = 0.1
    [0.1, 4, 0.2, 0.5], [0.1, –1, 0.2, 0.5]
    [0.1, 4.3, 0.2, 0.5], [0.1, –2, 0.2, 0.5]
    四个混沌吸引子图7(f)
    下载: 导出CSV
  • [1]

    Chua L O 1971 IEEE Trans. Circuits Theor. 18 507Google Scholar

    [2]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450131Google Scholar

    [3]

    鲜永菊, 夏诚, 钟德, 徐昌彪 2019 控制理论与应用 36 262Google Scholar

    Xian Y J, Xia C, Zhong D, Xu C B 2019 Control Theory Appl. 36 262Google Scholar

    [4]

    Li C B, Lu T N, Chen G R, Xing H Y 2019 Chaos 29 051102Google Scholar

    [5]

    Lai Q, Wan Z Q, Kuate P D K 2020 Electron. Lett. 56 1044Google Scholar

    [6]

    颜闽秀, 徐辉 2021 计算物理 38 244Google Scholar

    Yan M X, Xu H 2021 Chin. J. Comput. Phys. 38 244Google Scholar

    [7]

    Lai Q, Kuate P D K, Liu F, Liu F, Iu H H C 2019 IEEE Trans. Circuits Syst. Express Briefs 67 1129Google Scholar

    [8]

    Lai Q 2021 Int. J. Bifurcation Chaos 31 2150013Google Scholar

    [9]

    耿睿, 李中奇, 杨辉 2021 华东交通大学学报 38 61Google Scholar

    Geng R, Li Z Q, Yang H 2021 J. East China Jiaotong Univ. 38 61Google Scholar

    [10]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [11]

    Itoh M, Chua L O 2008 Int. J. Bifurcation Chaos 18 3183Google Scholar

    [12]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417Google Scholar

    [13]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502Google Scholar

    [14]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [15]

    Lai Q, Wan Z Q, Kengne L K, Kuate P D K, Chen C Y 2020 IEEE Trans. Circuits Syst. Express Briefs 68 2197Google Scholar

    [16]

    李晓霞, 郑驰, 王雪, 曹樱子, 徐桂芝 2022 哈尔滨工业大学学报 54 163Google Scholar

    Li X X, Zheng C, Wang X, Cao Y Z, Xu G Z 2022 J. Harbin Eng. Univ. 54 163Google Scholar

    [17]

    Lai Q, Lai C, Kuate P D K, Li C B, He S B 2022 Int. J. Bifurcation Chaos 32 2250042Google Scholar

    [18]

    Lai Q, Wan Z Q, Zhang H, Chen G R 2022 IEEE Trans. Neural Networks Learn. Syst.Google Scholar

    [19]

    Lai Q, Lai C, Zhang H, Li C B 2022 Chaos, Solitons Fractals 158 112017Google Scholar

    [20]

    包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502Google Scholar

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502Google Scholar

    [21]

    Li C B, Sprott J C 2016 Optik 127 10389Google Scholar

    [22]

    孙佳钰 2021 硕士学位论文 (南京: 南京信息工程大学)

    Sun J Y 2021 M. S. Thesis (Nanjing: Nanjing University of Information Science and Technology) (in Chinese)

    [23]

    Huang L L, Wang Y L, Jiang Y C, Lei T F 2021 Math. Prob. Eng. 2021 7457220Google Scholar

    [24]

    Zhang X, Li C B, Chen Y D, Iu H H C Lei T F 2020 Chaos, Solitons Fractals 139 110000Google Scholar

    [25]

    Carr J 1981 Applications of Centre Manifold Theory (New York: Springer) pp1–50

    [26]

    史传宝, 王光义, 臧寿池 2017 杭州电子科技大学学报(自然科学版) 37 1Google Scholar

    Shi C B, Wang G Y, Zang S C 2017 J. Hangzhou Dianzi Univ. (Nat. Sci. ) 37 1Google Scholar

    [27]

    王伟, 曾以成, 陈争, 孙睿婷 2017 计算物理 34 747Google Scholar

    Wang W, Zeng Y C, Chen Z, Sun R T 2017 Chin. J. Comput. Phys. 34 747Google Scholar

  • [1] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [2] 张贵重, 全旭, 刘嵩. 一个具有超级多稳定性的忆阻混沌系统的分析与FPGA实现. 物理学报, 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423
    [3] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [4] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [5] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [6] 吴先明, 何怡刚, 于文新. 基于电流反馈放大器的网格多涡卷混沌电路设计与实现. 物理学报, 2014, 63(18): 180506. doi: 10.7498/aps.63.180506
    [7] 黄沄. 一类多翼蝴蝶混沌吸引子及其电路实现. 物理学报, 2014, 63(8): 080505. doi: 10.7498/aps.63.080505
    [8] 贾红艳, 陈增强, 薛薇. 分数阶Lorenz系统的分析及电路实现. 物理学报, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [9] 罗明伟, 罗小华, 李华青. 一类四维多翼混沌系统及其电路实现. 物理学报, 2013, 62(2): 020512. doi: 10.7498/aps.62.020512
    [10] 王春华, 尹晋文, 林愿. 基于电流传输器的网格多涡卷混沌电路设计与实现. 物理学报, 2012, 61(21): 210507. doi: 10.7498/aps.61.210507
    [11] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现. 物理学报, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [12] 武花干, 包伯成, 刘中. 吸引子涡卷数量与分布的控制:系统设计及电路实现. 物理学报, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [13] 陈仕必, 曾以成, 徐茂林, 陈家胜. 用多项式和阶跃函数构造网格多涡卷混沌吸引子及其电路实现. 物理学报, 2011, 60(2): 020507. doi: 10.7498/aps.60.020507
    [14] 李春彪, 王翰康, 陈谡. 一个新的恒Lyapunov指数谱混沌吸引子与电路实现. 物理学报, 2010, 59(2): 783-791. doi: 10.7498/aps.59.783
    [15] 薛薇, 郭彦岭, 陈增强. 永磁同步电机的混沌分析及其电路实现. 物理学报, 2009, 58(12): 8146-8151. doi: 10.7498/aps.58.8146
    [16] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [17] 刘扬正. 超混沌Lü系统的电路实现. 物理学报, 2008, 57(3): 1439-1443. doi: 10.7498/aps.57.1439
    [18] 王光义, 郑 艳, 刘敬彪. 一个超混沌Lorenz吸引子及其电路实现. 物理学报, 2007, 56(6): 3113-3120. doi: 10.7498/aps.56.3113
    [19] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制. 物理学报, 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
    [20] 李世华, 蔡海兴. Chen氏混沌电路实现与同步控制实验研究. 物理学报, 2004, 53(6): 1687-1693. doi: 10.7498/aps.53.1687
计量
  • 文章访问数:  5496
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-04-20
  • 上网日期:  2022-08-10
  • 刊出日期:  2022-08-20

/

返回文章
返回