搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平温差对环形浅液池内Marangoni-热毛细对流的影响

王飞 彭岚 张全壮 刘佳

引用本文:
Citation:

水平温差对环形浅液池内Marangoni-热毛细对流的影响

王飞, 彭岚, 张全壮, 刘佳

Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool

Wang Fei, Peng Lan, Zhang Quan-Zhuang, Liu Jia
PDF
导出引用
  • 双向温差驱动下的Marangoni-热毛细对流在许多工程技术领域具有重要作用, 但是, 已有的大部分研究集中于单向温差作用下的流动. 因此, 采用数值模拟的方法研究了水平温差对双向温差驱动下的环形浅液池内Marangoni-热毛细对流的影响. 在一个给定的顶部换热条件下, 确定了不同水平温差作用下流动由轴对称稳态流动向三维非稳态流动转变的临界底部热流密度. 结果表明, 水平温差使得Marangoni-热毛细对流不稳定; 随着水平温差的持续增强, 稳态流动转变为一种规律的振荡流动, 最终变得混乱; 发现两种新的状态演化过程; 确定了水平温差和垂直温差在共同驱动流体运动时各自发挥的作用; 随着水平温差的增强, 最初出现在中间区域的最高表面温度不断向热壁移动, 在此过程中, 内壁附近的流动增强, 而外壁附近的流动减弱.
    The surface tension driven convection with the bidirectional temperature differences plays a very important role in many natural processes. However, most of the previous researches have focused only on the convection induced by a unidirectional temperature difference. In this paper, under the coexistence of bidirectional temperature differences, we conduct a series of numerical simulations to investigate the effect of horizontal temperature difference on the Marangoni-thermocapillary convection in a shallow annular pool. The critical values of bottom heat flux Qcri for transition from an axisymmetric steady flow to a three-dimensional unsteady flow at different values of Ma are determined. The result shows the horizontal temperature difference has a negative effect on the stability of Marangoni-thermocapillary convection. The simulation predicts two new state evolutions which do not appear in the convection with a unidirectional temperature difference. When Q is less than the Qcri value of 2.4×10-3, the Marangoni convection without horizontal temperature difference is steady and axisymmetric. When a small horizontal temperature difference is imposed, the convection called basic flow keeps steady and axisymmetric. When the value of Ma exceeds a certain threshold value Macri, the convection becomes a three-dimensional unsteady flow. After this unsteady flow happens, with the increase of Ma, the surface temperature fluctuation evolves from a punctate wave to a hydrothermal wave, and finally to a chaotic wave. Accordingly, the temperature oscillation with time is a periodically regular oscillation at first, then turns into a chaotic mess. When Q is larger than the corresponding Qcri value of 2.4×10-3, without a horizontal difference, the convection is unsteady and no basic flow exists in the variation process of Ma. With the increase of Ma, the surface temperature fluctuation evolves from a double hydrothermal wave to a single hydrothermal wave, and finally to a chaotic wave. The vertical heat transfer and horizontal temperature difference have different effects on the fluid, and their separate roles in driving fluid are determined. The bottom heat flux causes the surface fluid to flow in two opposite radial directions as the highest surface temperature is located in the middle region, while the horizontal temperature difference induces the surface fluid to flow in a single radial direction as the highest surface temperature appears at the hot wall. The combined action of these two forces generates different flows. The increase of horizontal temperature difference leads to the highest surface temperature, which originally appears in the middle region due to the bottom heat flux, and moves toward the hot wall. In this process, the horizontal temperature difference has a positive effect on the enhancement of flow near inner wall but it has a negative effect on the flow near outer wall.
    • 基金项目: 国家自然科学基金(批准号: 51276203)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51276203).
    [1]

    Bénard H 1901 Ann. Chim. Phys. 23 62

    [2]

    Pearson J R A 1958 J. Fluid. Mech. 4 486

    [3]

    Schatz M F, Vanhook S J, Mccormick W D, Swift J B, Swinney H L 1999 Phys. Fluids 11 2577

    [4]

    Lebon G, Dauby P C, Regnier V C 2001 Acta Astronaut. 48 617

    [5]

    Kim J, Choi C K, Kang Y T 2004 Int. J. Heat and Mass Transfer 47 2395

    [6]

    Xu B, Ai X, Li B Q 2007 Int. J. Heat and Mass Transfer 50 3035

    [7]

    Siri Z, Hashim I 2008 Int. Commun. Heat. Mass 35 1130

    [8]

    Siri Z, Mustafa Z, Hashim I 2009 Int. J. Heat and Mass Transfer 52 5770

    [9]

    Guo W D, Narayanan R 2007 J. Colloid. Interface. Sci. 314 727

    [10]

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298 (in Chinese) [郑连存, 盛晓艳, 张欣欣 2006 物理学报 55 5298]

    [11]

    Zhang Y, Zheng L C, Zhang X X 2009 Acta Phys. Sin. 58 5506 (in Chinese) [张艳, 郑连存, 张欣欣 2009 物理学报 58 5506]

    [12]

    Bammou L, Omari K E, Blancher S, Guer Y L, Benhamou B, Mediouni T 2013 Int. J. Heat Fluid Flow 42 265

    [13]

    Rachid E S, Kamal E O, Yves L G, Serge B 2014 Int. J. Therm. Sci. 86 198

    [14]

    Smith M K, Davis S H 1983 J. Fluid. Mech. 132 119

    [15]

    Garnier N, Chiffaudel A 2001 Eur. Phys. J. B 19 87

    [16]

    Li Y R, Imaishi N, Azami T, Hibiya T 2004 J. Crystal Growth 260 28

    [17]

    Shi W Y, Imaishi N 2006 J. Crystal Growth 290 280

    [18]

    Kuhlmann H C, Albensoeder S 2008 Phys. Rev. E 77 036303

    [19]

    Gong Z X, Li Y R, Peng L, Wu S Y, Shi W Y 2013 Acta Phys. Sin. 62 040201 (in Chinese) [龚振兴, 李友荣, 彭岚, 吴双应, 石万元 2013 物理学报 62 040201]

    [20]

    Takagi Y, Okano Y, Minakuchi H, Dost S 2014 J. Crystal Growth 385 72

    [21]

    Li Y R, Zhang H R, Wu C M 2012 Heat Mass Transfer 48 241

    [22]

    Peng Z, Li D, Qi K 2013 Int. J. Heat and Mass Transfer 57 457

  • [1]

    Bénard H 1901 Ann. Chim. Phys. 23 62

    [2]

    Pearson J R A 1958 J. Fluid. Mech. 4 486

    [3]

    Schatz M F, Vanhook S J, Mccormick W D, Swift J B, Swinney H L 1999 Phys. Fluids 11 2577

    [4]

    Lebon G, Dauby P C, Regnier V C 2001 Acta Astronaut. 48 617

    [5]

    Kim J, Choi C K, Kang Y T 2004 Int. J. Heat and Mass Transfer 47 2395

    [6]

    Xu B, Ai X, Li B Q 2007 Int. J. Heat and Mass Transfer 50 3035

    [7]

    Siri Z, Hashim I 2008 Int. Commun. Heat. Mass 35 1130

    [8]

    Siri Z, Mustafa Z, Hashim I 2009 Int. J. Heat and Mass Transfer 52 5770

    [9]

    Guo W D, Narayanan R 2007 J. Colloid. Interface. Sci. 314 727

    [10]

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298 (in Chinese) [郑连存, 盛晓艳, 张欣欣 2006 物理学报 55 5298]

    [11]

    Zhang Y, Zheng L C, Zhang X X 2009 Acta Phys. Sin. 58 5506 (in Chinese) [张艳, 郑连存, 张欣欣 2009 物理学报 58 5506]

    [12]

    Bammou L, Omari K E, Blancher S, Guer Y L, Benhamou B, Mediouni T 2013 Int. J. Heat Fluid Flow 42 265

    [13]

    Rachid E S, Kamal E O, Yves L G, Serge B 2014 Int. J. Therm. Sci. 86 198

    [14]

    Smith M K, Davis S H 1983 J. Fluid. Mech. 132 119

    [15]

    Garnier N, Chiffaudel A 2001 Eur. Phys. J. B 19 87

    [16]

    Li Y R, Imaishi N, Azami T, Hibiya T 2004 J. Crystal Growth 260 28

    [17]

    Shi W Y, Imaishi N 2006 J. Crystal Growth 290 280

    [18]

    Kuhlmann H C, Albensoeder S 2008 Phys. Rev. E 77 036303

    [19]

    Gong Z X, Li Y R, Peng L, Wu S Y, Shi W Y 2013 Acta Phys. Sin. 62 040201 (in Chinese) [龚振兴, 李友荣, 彭岚, 吴双应, 石万元 2013 物理学报 62 040201]

    [20]

    Takagi Y, Okano Y, Minakuchi H, Dost S 2014 J. Crystal Growth 385 72

    [21]

    Li Y R, Zhang H R, Wu C M 2012 Heat Mass Transfer 48 241

    [22]

    Peng Z, Li D, Qi K 2013 Int. J. Heat and Mass Transfer 57 457

  • [1] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性. 物理学报, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [2] 李逢超, 付宇, 李超, 杨建刚, 胡春波. 铝液滴撞击曲面的流动特性分析. 物理学报, 2022, 71(18): 184701. doi: 10.7498/aps.71.20220442
    [3] 张琦, 渠静. 基于前摄效应的不耐烦行为建模与双向行人流动态. 物理学报, 2022, 71(7): 070502. doi: 10.7498/aps.71.20211537
    [4] 赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人. 基于Marangoni效应的液-液驱动铺展过程. 物理学报, 2021, 70(18): 184701. doi: 10.7498/aps.70.20210485
    [5] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [6] 方龙, 陈国定. 冷液滴/热液池碰撞混合及温度特性. 物理学报, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [7] 陈俊, 沈超群, 王贺, 张程宾. 液-液两相液层间传质过程的Rayleigh-Bénard-Marangoni对流特性. 物理学报, 2019, 68(7): 074701. doi: 10.7498/aps.68.20181295
    [8] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [9] 石峰, 李伟斌, 李景庆, 蓝鼎, 王育人. 限位液滴瞬时失重自激振荡. 物理学报, 2015, 64(19): 196801. doi: 10.7498/aps.64.196801
    [10] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响. 物理学报, 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [11] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [12] 徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟. 微重力条件下不同截面形状管中毛细流动的实验研究. 物理学报, 2013, 62(13): 134702. doi: 10.7498/aps.62.134702
    [13] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究. 物理学报, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [14] 李永强, 刘玲, 张晨辉, 段俐, 康琦. 微重力环境下无限长柱体内角毛细流动解析近似解研究. 物理学报, 2013, 62(2): 024701. doi: 10.7498/aps.62.024701
    [15] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [16] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解. 物理学报, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [17] 刘中强, 甘孔银, 李英骏, 姜素蓉. 方波电泳电场驱动下液膜马达的电致流动特征. 物理学报, 2012, 61(13): 134703. doi: 10.7498/aps.61.134703
    [18] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [19] 越方禹, 邵 军, 魏彦峰, 吕 翔, 黄 炜, 杨建荣, 褚君浩. 变温吸收谱研究液相外延碲镉汞浅能级. 物理学报, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [20] 欧阳成. 电流变液系统流动的渐近估计. 物理学报, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
计量
  • 文章访问数:  6024
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-02-15
  • 刊出日期:  2015-07-05

/

返回文章
返回