搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄液滴在润湿性受限轨道上的热毛细迁移特性

李春曦 马成 叶学民

引用本文:
Citation:

薄液滴在润湿性受限轨道上的热毛细迁移特性

李春曦, 马成, 叶学民

Thermocapillary migration of thin droplet on wettability-confined track

Li Chun-Xi, Ma Cheng, Ye Xue-Min
PDF
HTML
导出引用
  • 通过固体表面改性可对液滴热毛细迁移过程进行调控. 基于润滑理论和滑移模型建立了均匀温度梯度作用下液滴在润湿性受限轨道上运动的数学模型, 通过将基底划分成亲水区域和疏水区域构建了润湿性受限轨道. 结合接触线动力学提出了三维液滴在不同方向上接触线移动速度的计算方法, 得到了液滴热毛细迁移的演化历程, 分析了轨道宽度和润湿性对液滴迁移特性的影响. 研究表明: 液滴主体受温度梯度作用由高温区向低温区迁移, 液滴后缘在移动过程中与主体部分间形成一层薄液膜, 即薄液膜拖尾. 液滴在垂直于轨道方向上的铺展受到抑制, 收缩到轨道边缘后保持定扎状态. 前进接触线移动速度开始时迅速减小, 后缓慢降低趋于平稳; 前进接触线移动速度与轨道宽度呈负相关. 垂直于轨道方向上的壁面润湿性限制导致的排挤作用, 在初始的短暂时刻对液滴在轨道上的热毛细迁移具有加速作用. 液滴前进接触线移动速度与轨道润湿性呈正相关. 增强轨道润湿性使得后退接触线移动速度的初始值增大, 但对其稳定值影响不大. 相比于改变轨道润湿性, 改变轨道宽度更易于调控液滴热毛细迁移过程.
    The thermocapillary migration of droplets on a solid surface is widely used in daily life and industrial fields. Regulating droplet thermocapillary migration by changing surface wettability has received extensive attention. According to the lubrication theory and slip boundary conditions, we establish a mathematical model of the thermocapillary migration dynamics of a droplet on wettability-confined tracks subjected to a uniform temperature gradient. Combined with the contact line dynamics, a method of determining the velocity of the contact line in a different direction of the three-dimensional droplet is proposed, the simulation is carried out with FreeFEM++. The evolution of droplet migration is examined, and the effects of track width and wettability on the droplet migration dynamics are emphatically investigated. The results show that the main part of the droplet moves from the high-temperature region to the low-temperature region, the trailing edge of the droplet forms a small bulge during the movement, and a thin liquid film is formed between the bulge and the main part of the droplet. The droplet spreading perpendicular to the track direction is inhibited and remains pinned after shrinking to the track edge. Negative correlation between the velocity of the advancing contact line and the track width is observed. The velocity of the advancing line first rapidly and then slowly decrease to a steady state. The squeezing effect caused by the wettability confined perpendicular to the track direction accelerates the thermocapillary migration of the droplet on the track in the initial short time. The enhanced track wettability increases the initial velocity of the receding contact line but has little effect on its stable value. The velocity of the advancing contact line is positively correlated with track wettability. Changing the track width is possibly easier to regulate the thermocapillary migration of a droplet than varying the track wettability.
      通信作者: 叶学民, yexuemin@163.com
    • 基金项目: 国家自然科学基金(批准号: 51876065)和河北省自然科学基金(批准号: A2015502058)资助的课题.
      Corresponding author: Ye Xue-Min, yexuemin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51876065) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015502058).
    [1]

    Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633Google Scholar

    [2]

    Bakli C, PD S H, Chakraborty S 2017 Nanoscale 9 12509Google Scholar

    [3]

    Musin A, Grynyov R, Frenkel M, Bormashenko E 2016 J. Colloid Interface Sci. 479 182Google Scholar

    [4]

    Dhiman S, Jayaprakash K, Iqbal R, Sen A 2018 Langmuir 34 12359Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838Google Scholar

    [7]

    Dai Q W, Huang W, Wang X L 2014 Exp. Therm. Fluid Sci. 57 200Google Scholar

    [8]

    Chaudhury M K, Whitesides G M 1992 Science 256 1539Google Scholar

    [9]

    Qi L, Niu Y, Ruck C, Zhao Y 2019 Lab Chip 19 223Google Scholar

    [10]

    石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595Google Scholar

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595Google Scholar

    [11]

    Dai Q W, Huang W, Wang X L, Khonsari M M 2021 Tribol. Int. 154 106749Google Scholar

    [12]

    Ghosh A, Ganguly R, Schutzius T M, Megaridis C M 2014 Lab Chip 14 1538Google Scholar

    [13]

    Sen U, Chatterjee S, Ganguly R, Dodge R, Yu L, Megaridis C M 2018 Langmuir 34 1899Google Scholar

    [14]

    姚祎, 周哲玮, 胡国辉 2013 物理学报 62 134701Google Scholar

    Yao W, Zhou Z W, Hu G H 2013 Acta Phys. Sin. 62 134701Google Scholar

    [15]

    Wang M, Liu Q, Zhang H R, Wang C, Wang L, Xiang B X, Fan Y T, Guo C F, Ruan S C 2017 ACS Appl. Mater. Interfaces 9 29248Google Scholar

    [16]

    Dai Q W, Ji Y J, Chong Z J, Huang W, Wang X L 2019 J. Colloid Interface Sci. 557 837Google Scholar

    [17]

    Fu X J, Sun J J, Ba Y 2022 Phys. Fluids 34 012119Google Scholar

    [18]

    Diddens C, Kuerten J G, Van der Geld C, Wijshoff H 2017 J. Colloid Interface Sci. 487 426Google Scholar

    [19]

    李春曦, 程冉, 叶学民 2021 物理学报 70 204701Google Scholar

    Li C X, Cheng R, Ye X M 2021 Acta Phys. Sin. 70 204701Google Scholar

    [20]

    Ye X M, Zhang N K, Cheng R, Li C X 2022 J. Appl. Fluid Mech. 15 1361

    [21]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125Google Scholar

    [22]

    Beltrame P, Knobloch E, Hänggi P, Thiele U 2011 Phys. Rev. E 83 016305Google Scholar

    [23]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365Google Scholar

    [24]

    Smith M K 1995 J. Fluid Mech. 294 209Google Scholar

    [25]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892Google Scholar

    [26]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [27]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 184704Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 184704Google Scholar

    [28]

    Nagy M, Škvarla J 2013 Acta Montanistica Slovaca 18 125

    [29]

    Dai Q W, Khonsari M M, Shen C, Huang W, Wang X L 2016 Langmuir 32 7485Google Scholar

    [30]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [31]

    Chowdhury I U, Mahapatra P S, Sen A K 2019 Phys. Fluids 31 042111Google Scholar

    [32]

    宋金龙, 徐文骥 2017 金属加工: 冷加工 2017 65

    Song J L, Xu W J 2017 Metal Working: Metal Cutting 2017 65

  • 图 1  (a) 液滴剖面图; (b) 润湿性受限轨道示意图

    Fig. 1.  (a) Profile of the droplet; (b) diagram of a wettability-confined track.

    图 2  接触角监测点位置图

    Fig. 2.  Diagram of contact angle monitoring points.

    图 3  模拟结果与实验结果对比(图中上半部分为文献[29]的实验结果, 右侧的标尺表示模拟所得液膜厚度)

    Fig. 3.  Comparison of simulated and experiment results (the upper part of the figure is cited from the literature [29], the scale on the right of the figure indicates the thickness of the droplet from the simulation results).

    图 4  液滴迁移距离随时间的变化

    Fig. 4.  Temporal evolution of droplet migration distance.

    图 5  (a) 液滴轮廓演化; (b) 液滴接触线随时间变化

    Fig. 5.  (a) Evolution of droplet; (b) temporal evolution of droplet contact lines.

    图 6  液滴演化历程 (a) t = 100的液滴三维外形图; (b) t = 40000的液滴三维外形图; (c) 液滴沿x方向的投影; (d) 液滴沿y方向的投影

    Fig. 6.  Evolution of droplet: (a) 3D droplet shape at t = 100; (b) 3D droplet shape at t = 40000; (c) profile along the x-direction; (d) profile along the y-direction.

    图 7  接触线随时间的变化 (a) 前进接触线和后退接触线; (b) 左右两侧接触线; (c)后退接触线处的不同主导因素; (d) 前进接触线处的不同主导因素

    Fig. 7.  Temporal evolution of droplet contact lines: (a) The advancing and receding contact lines; (b) left and right contact lines; (c) effects of capillarity, gravity and thermal Marangoni at the receding contact line; (d) effects of capillarity, gravity and thermal Marangoni at the advancing contact line.

    图 8  液滴动态接触角随时间的变化 (a) 液滴前进接触角和后退接触角; (b)液滴左侧接触角

    Fig. 8.  Temporal evolution of droplet dynamic contact angles: (a) The advancing and receding contact angles of the droplet; (b) the left contact angle of the droplet.

    图 9  轨道宽度E对接触线位置、移动速度和接触角的影响 (a) 后退接触线; (b) 前进接触线; (c) 后退接触线移动速度; (d) 前进接触线移动速度; (e) 右侧接触线; (f) 前进和后退接触角

    Fig. 9.  The effect of E on the position, velocity of contact lines and contact angles: (a) Receding contact line position; (b) advancing contact line position; (c) the velocity of receding contact line; (d) the velocity of advancing contact line; (e) right contact line; (f) the advancing and receding contact angles.

    图 10  润湿性对接触线移动速度的影响 (a) 后退接触线移动速度; (b) 前进接触线移动速度

    Fig. 10.  The effect of wettability on the velocity of contact lines: (a) The velocity of receding contact line; (b) the velocity of advancing contact line.

    表 1  网格无关性验证

    Table 1.  Validation of grid independence.

    网格数目液滴前进
    接触角 θa
    液滴前进接触线
    移动速度 ua/10–4
    计算所需
    CPU时长/h
    45840.15061.7213.15
    100280.15341.7798.02
    155780.15361.78114.21
    下载: 导出CSV

    表 2  有量纲参数及典型数量级

    Table 2.  Typical order of dimension parameters.

    物性参数符号 / 单位典型数量级
    液滴厚度$ \widetilde{H}/ {\rm{m}}$10–4
    长度特征尺度$ \widetilde{L}/ {\rm{m}}$10–3
    液体黏度$\widetilde{\mu }/ ({\rm{Pa} }{\cdot} {\rm{s} })$10–3
    液体密度$\widetilde{\rho }/ ({\rm{kg} }{\cdot} {\rm{m} }^{-3} )$103
    传热系数$\widetilde{\alpha }/({\rm{kW} }{\cdot}{\rm{m} }^{-2}{\cdot}{\rm{K} }^{-1} )$1—10
    壁面温度$ \widetilde{T}/{\rm{K}} $103—102
    界面张力$\widetilde{\sigma }/ ({\rm{N} }{\cdot} {\rm{m} }^{-1} )$10–2
    特征速度$\widetilde{U}=\dfrac{\widetilde{\sigma }_{ {T}_{0} }-\widetilde{\sigma }_{ {T}_{\rm{m} } } }{\widetilde{H}/\left(\tilde{\mu }\tilde{L}\right)}/ ({\rm{m} }{\cdot} {\rm{s} }^{-1}$)10–4—1
    下载: 导出CSV

    表 3  无量纲参数取值范围

    Table 3.  Range of dimensionless parameters.

    无量纲参数定义式取值范围
    小量ε${\varepsilon }=\widetilde{H}/\widetilde{L}$10–2—10–1
    邦德数Bo$ Bo=\widetilde{\rho }g{\widetilde{H}}^{2}/\widetilde{\mu }U $10–2—10–1
    温度梯度$ \varGamma $$\varGamma =\dfrac{(d{\widetilde{T} }_{\rm{w} }/{\rm{d}}\widetilde{x})\widetilde{L} }{ {\widetilde{T} }_{\rm{m} }-{\widetilde{T} }_{0} }$10–3—10–2
    毛细数C$ C=\dfrac{{\varepsilon }^{2}{\widetilde{\sigma }}_{{\widetilde{T}}_{\rm{m}}}}{{\widetilde{\sigma }}_{{\widetilde{T}}_{0}}-{\widetilde{\sigma }}_{{\widetilde{T}}_{\rm{m}}}} $10–2—10–1
    界面温度敏感系数$\varOmega_{\rm{i}} $$ {\varOmega }_{\rm{i}}=\dfrac{{\widetilde{\alpha }}_{T\rm{i}}({\widetilde{T}}_{\rm{m}}-{\widetilde{T}}_{0})}{{\widetilde{\sigma }}_{{\rm{i}, \widetilde{T}}_{0}}-{\widetilde{\sigma }}_{{\rm{l}\rm{g}, \widetilde{T}}_{\rm{m}}}} $0—102
    下载: 导出CSV
  • [1]

    Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633Google Scholar

    [2]

    Bakli C, PD S H, Chakraborty S 2017 Nanoscale 9 12509Google Scholar

    [3]

    Musin A, Grynyov R, Frenkel M, Bormashenko E 2016 J. Colloid Interface Sci. 479 182Google Scholar

    [4]

    Dhiman S, Jayaprakash K, Iqbal R, Sen A 2018 Langmuir 34 12359Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838Google Scholar

    [7]

    Dai Q W, Huang W, Wang X L 2014 Exp. Therm. Fluid Sci. 57 200Google Scholar

    [8]

    Chaudhury M K, Whitesides G M 1992 Science 256 1539Google Scholar

    [9]

    Qi L, Niu Y, Ruck C, Zhao Y 2019 Lab Chip 19 223Google Scholar

    [10]

    石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595Google Scholar

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595Google Scholar

    [11]

    Dai Q W, Huang W, Wang X L, Khonsari M M 2021 Tribol. Int. 154 106749Google Scholar

    [12]

    Ghosh A, Ganguly R, Schutzius T M, Megaridis C M 2014 Lab Chip 14 1538Google Scholar

    [13]

    Sen U, Chatterjee S, Ganguly R, Dodge R, Yu L, Megaridis C M 2018 Langmuir 34 1899Google Scholar

    [14]

    姚祎, 周哲玮, 胡国辉 2013 物理学报 62 134701Google Scholar

    Yao W, Zhou Z W, Hu G H 2013 Acta Phys. Sin. 62 134701Google Scholar

    [15]

    Wang M, Liu Q, Zhang H R, Wang C, Wang L, Xiang B X, Fan Y T, Guo C F, Ruan S C 2017 ACS Appl. Mater. Interfaces 9 29248Google Scholar

    [16]

    Dai Q W, Ji Y J, Chong Z J, Huang W, Wang X L 2019 J. Colloid Interface Sci. 557 837Google Scholar

    [17]

    Fu X J, Sun J J, Ba Y 2022 Phys. Fluids 34 012119Google Scholar

    [18]

    Diddens C, Kuerten J G, Van der Geld C, Wijshoff H 2017 J. Colloid Interface Sci. 487 426Google Scholar

    [19]

    李春曦, 程冉, 叶学民 2021 物理学报 70 204701Google Scholar

    Li C X, Cheng R, Ye X M 2021 Acta Phys. Sin. 70 204701Google Scholar

    [20]

    Ye X M, Zhang N K, Cheng R, Li C X 2022 J. Appl. Fluid Mech. 15 1361

    [21]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125Google Scholar

    [22]

    Beltrame P, Knobloch E, Hänggi P, Thiele U 2011 Phys. Rev. E 83 016305Google Scholar

    [23]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365Google Scholar

    [24]

    Smith M K 1995 J. Fluid Mech. 294 209Google Scholar

    [25]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892Google Scholar

    [26]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [27]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 184704Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 184704Google Scholar

    [28]

    Nagy M, Škvarla J 2013 Acta Montanistica Slovaca 18 125

    [29]

    Dai Q W, Khonsari M M, Shen C, Huang W, Wang X L 2016 Langmuir 32 7485Google Scholar

    [30]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [31]

    Chowdhury I U, Mahapatra P S, Sen A K 2019 Phys. Fluids 31 042111Google Scholar

    [32]

    宋金龙, 徐文骥 2017 金属加工: 冷加工 2017 65

    Song J L, Xu W J 2017 Metal Working: Metal Cutting 2017 65

  • [1] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [2] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [3] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [4] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [5] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性. 物理学报, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [10] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [11] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究. 物理学报, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [12] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟. 物理学报, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [13] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [14] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [16] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [19] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [20] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
计量
  • 文章访问数:  1891
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-10-28
  • 上网日期:  2022-11-03
  • 刊出日期:  2023-01-20

/

返回文章
返回