搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴碰撞Janus颗粒球表面的行为特征

彭家略 郭浩 尤天涯 纪献兵 徐进良

引用本文:
Citation:

液滴碰撞Janus颗粒球表面的行为特征

彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良

Behavioral characteristics of droplet collision on Janus particle spheres

Peng Jia-Lue, Guo Hao, You Tian-Ya, Ji Xian-Bing, Xu Jin-Liang
PDF
HTML
导出引用
  • 为研究液滴碰撞Janus颗粒(双亲性)球表面的独特行为特征, 以粒径为5.0 mm铜球为材料制备了Janus颗粒, 用直径为2.0 mm的液滴, 在韦伯数(We)为2.7, 10, 20, 30的测试情况下对Janus颗粒球表面进行了碰撞实验. 结果表明: 液滴碰撞Janus颗粒球表面后的运动可分为铺展、回缩、振荡和回弹4个过程. 在不同We下, 液滴碰撞Janus颗粒后的运动状态主要与表面润湿性相关, 在Janus颗粒亲水侧表现为铺展特性且铺展系数γ随着时间t的增大而逐渐增大并趋于稳定; 但在疏水侧, 表现为回弹现象, 铺展系数γ会出现类似“抛物线”形状; 当液滴碰撞Janus颗粒球表面亲-疏水分界线时, 液滴铺展和回弹同时发生. 基于能量平衡和受力分析发现, 液滴动能和表面能的互相转化是液滴铺展的关键, 液滴会在重力、惯性力、表面张力、黏性力、接触力等力的综合作用下展现其独特的行为特征并最终达到平衡状态.
    To acquire the unique behavioral characteristics that droplets impact the Janus particle (amphiphilicity) sphere surface, a series of collision experiments is conducted by using Janus particles with a diameter of 5.0 mm. These Janus particles are prepared by chemical treatment of the copper particles. Water droplets with a diameter of 2.0 mm are used to impact hydrophbilic surface, hydrophobic surface and hydropholic-hydropholic boundary of Janus particle, under four Weber numbers which are 2.7, 10, 20 and 30, the corresponing Reynold numbers are 621.8, 1191.9, 1589.2 and 2185.1. The results show that the collision process can be divided into four stages: spread, retraction, oscillation and rebound. Under different Weber numbers, the behavioral characteristics of droplets are mainly affected by the surface wettability. On the hydrophbilic surface, the droplets exhibit the spreading characteristics, with increasing time the spreading coefficient gradually increases and finally tends to be stable. As Weber number increases, the difference in spreading coefficient for droplet under adjacent Weber number gradually decreases, indicating that droplets spreading is mainly affected by inertia. On the hydrophobic surface, the spreading coefficient on the figure presents a "parabola" shape. Droplets spreading takes the same time to reach the maximum spreading coefficient under different Weber numbers. However, when droplets impact the hydropholic-hydropholic boundary, droplets show spreading and rebound behavioral characteristics simultaneously. At the beginning of droplets spreading, the spreading coefficient has almost the same value on both sides of the hydropholic-hydropholic boundary. With the increase of time, part of droplets on the hydrophobic are attracted by the hydrophbilic side surface and go into hydrophbilic side zone. In order to explain this phenomenon, the concept of line tension is introduced and the line tension on the hydrophilic side is found to be less than that on the hydrophobic side by analyzing the forces on both sides of the droplets. Based on energy balance and force analysis, it is found that the mutual conversion of droplet kinetic energy and surface energy are the key factor to make droplets spread. The droplets possess the unique behavioral characteristics and reach an equilibrium state under the combined influence of gravity, inertial force, surface tension, viscous force, and contact force.
      通信作者: 纪献兵, jxb@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51676071)和国家重点研发计划(批准号: 2017YFB0601801)资助的课题
      Corresponding author: Ji Xian-Bing, jxb@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51676071) and the National Key R&D Program of China (Grant No. 2017YFB0601801)
    [1]

    Kim S Y, Choi B G, Baek W K, Park S H, Park S W, Shin J W 2019 Smart Mater. Struct. 28 035025Google Scholar

    [2]

    Derby B 2010 Annu. Rev. Mater. Sci. 40 395Google Scholar

    [3]

    Zhou Z F, Chen B, Wang R, Wang G X 2017 Exp. Therm. Fluid Sci. 82 189Google Scholar

    [4]

    Gyeongrak C, Jong L, Ju C, Young J K, Yeon S C, Mark S Chang M, Kwon L, Sung K, Inpil K 2016 Sensors. 16 1171Google Scholar

    [5]

    Aguilar G, Vu H, Nelson J S 2004 Phys. Med. Biol. 49 147Google Scholar

    [6]

    代超, 纪献兵, 周冬冬, 王野, 徐进良 2018 浙江大学学报(工学版) 1 36Google Scholar

    Dai C, Ji X B, Zhou D D, Wang Y, Xu J L 2018 Journal of Zhejiang Univ. (Engineering Science). 1 36Google Scholar

    [7]

    Kawahara N, Kintaka K, Tomita E 2017 Spie. 10328 1032817Google Scholar

    [8]

    Rioboo R, Voue M, Vaillant A, Coninck D J 2008 Langmuir. 24 14074Google Scholar

    [9]

    Biance A L, Clanet C, Quéré D 2004 Phys. Rev. E. 69 016301Google Scholar

    [10]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365Google Scholar

    [11]

    Hamlett C A E, Atherton S, Shirtcliffe N J, Mchale G, Ahn S, Doerr S H 2013 Eur. J. Soil. Sci. 64 324Google Scholar

    [12]

    Kang B S, Lee D H 2000 Exp. Fluids. 29 380Google Scholar

    [13]

    毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 物理学报 61 293Google Scholar

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta. Phys. Sin. 61 293Google Scholar

    [14]

    郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 5 48Google Scholar

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 J. Chem. Ind. Eng. 5 48Google Scholar

    [15]

    Khurana G, Sahoo N, Dhar P 2019 Phys. Fluids. 31 072003Google Scholar

    [16]

    Amirfazli A, Banitabaei S A 2017 Phys. Fluids. 29 419Google Scholar

    [17]

    Bakshi S, Roisman I V, Tropea C 2007 Phys. Fluids. 19 032102Google Scholar

    [18]

    Gennes D P G 1992 Rev. Mod. Phys. 64 645Google Scholar

    [19]

    Mitra S, Nguyen T B, Doroodchi E, Pareek V, Joshi J B, Evans G M 2016 Chem. Eng. Sci. 149 181Google Scholar

    [20]

    杨卧龙 2017 博士学位论文 (北京: 华北电力大学)

    Yang W L 2017 Ph. D. Dissertation (Beijing: North China Electric Power University) (in Chinese)

    [21]

    Clanet C, BéGUIN, CéDRIC, Richard D, QUéRé D 2004 J. Fluid Mech. 517 199Google Scholar

    [22]

    Khojasteh D, Bordbar A, Kamali R, Marengo M 2017 Int. J. Comput. Fluid D. 31 310Google Scholar

    [23]

    汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51Google Scholar

    Wang Y E, Zhou J H, Qing Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock. 31 51Google Scholar

    [24]

    王辉 2013硕士学位论文 (大连: 大连理工大学)

    Wang H R 2013 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [25]

    Yasmin D, Mitra S, Evans G M 2019 Miner. Eng. 131 111Google Scholar

    [26]

    Gennes P G D 1985 Rev. Mod. Phys. 57 827Google Scholar

    [27]

    Gibbs J W 1948 Nature. 124 119Google Scholar

    [28]

    Pethica B A 1977 J. Colloid Interf. Sci. 62 567Google Scholar

    [29]

    Guzzardi L, Rosso R 2007 J. Food Compos. Anal. 40 19Google Scholar

  • 图 1  液滴碰撞球面实验装置系统 1. 计算机; 2. 高速摄影仪; 3. 微流量液滴控制器; 4. Janus球; 5. 可调节底柱

    Fig. 1.  Experimental set up of the droplet collision on spherical surface. 1. Computer; 2. high speed camera; 3. digitized microliter droplet dispenser; 4. Janus sphere; 5. adjustable bottom column.

    图 2  不同We下液滴碰撞疏水侧球面行为的动态过程

    Fig. 2.  Dynamic behavior of droplet collision on the hydrophobic spherical surface under different We

    图 3  不同We下的动态铺展因子变化(疏水侧)

    Fig. 3.  Dynamic spreading factor of droplet collision under different We (hydrophobic side).

    图 4  不同We下液滴碰撞亲水侧球面行为的动态过程

    Fig. 4.  Dynamic behavior of droplet collision on the hydrophilic spherical surface under different We.

    图 5  不同We下的动态铺展因子变化(亲水侧)

    Fig. 5.  Dynamic spreading factor of droplet collision under different We (hydrophilic side).

    图 6  不同We下液滴碰撞亲疏水分界线行为的动态过程

    Fig. 6.  Dynamic behavior of droplet collision on the hydrophilic-hydrophobic boundary under different We.

    图 7  不同We下的动态铺展因子变化 (亲疏水分界线) (a) 液滴在Janus亲水侧的变化; (b) 液滴在Janus疏水侧的变化

    Fig. 7.  Dynamic spreading factor of droplet collision under different We (the hydrophilic-hydrophobic boundary): (a) Dynamic spreading factor of droplet on the hydrophilic side; (b) dynamic spreading factor of droplet on the hydrophobic side.

    图 8  液滴在疏水侧、亲水侧和亲疏水分界线的受力

    Fig. 8.  Force analysis of the droplet on the hydrophobic side, hydrophilic side and hydrophilic-hydrophobic boundary.

    图 9  球面的线张力效应

    Fig. 9.  Line tension effect of sphere.

  • [1]

    Kim S Y, Choi B G, Baek W K, Park S H, Park S W, Shin J W 2019 Smart Mater. Struct. 28 035025Google Scholar

    [2]

    Derby B 2010 Annu. Rev. Mater. Sci. 40 395Google Scholar

    [3]

    Zhou Z F, Chen B, Wang R, Wang G X 2017 Exp. Therm. Fluid Sci. 82 189Google Scholar

    [4]

    Gyeongrak C, Jong L, Ju C, Young J K, Yeon S C, Mark S Chang M, Kwon L, Sung K, Inpil K 2016 Sensors. 16 1171Google Scholar

    [5]

    Aguilar G, Vu H, Nelson J S 2004 Phys. Med. Biol. 49 147Google Scholar

    [6]

    代超, 纪献兵, 周冬冬, 王野, 徐进良 2018 浙江大学学报(工学版) 1 36Google Scholar

    Dai C, Ji X B, Zhou D D, Wang Y, Xu J L 2018 Journal of Zhejiang Univ. (Engineering Science). 1 36Google Scholar

    [7]

    Kawahara N, Kintaka K, Tomita E 2017 Spie. 10328 1032817Google Scholar

    [8]

    Rioboo R, Voue M, Vaillant A, Coninck D J 2008 Langmuir. 24 14074Google Scholar

    [9]

    Biance A L, Clanet C, Quéré D 2004 Phys. Rev. E. 69 016301Google Scholar

    [10]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365Google Scholar

    [11]

    Hamlett C A E, Atherton S, Shirtcliffe N J, Mchale G, Ahn S, Doerr S H 2013 Eur. J. Soil. Sci. 64 324Google Scholar

    [12]

    Kang B S, Lee D H 2000 Exp. Fluids. 29 380Google Scholar

    [13]

    毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 物理学报 61 293Google Scholar

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta. Phys. Sin. 61 293Google Scholar

    [14]

    郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 5 48Google Scholar

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 J. Chem. Ind. Eng. 5 48Google Scholar

    [15]

    Khurana G, Sahoo N, Dhar P 2019 Phys. Fluids. 31 072003Google Scholar

    [16]

    Amirfazli A, Banitabaei S A 2017 Phys. Fluids. 29 419Google Scholar

    [17]

    Bakshi S, Roisman I V, Tropea C 2007 Phys. Fluids. 19 032102Google Scholar

    [18]

    Gennes D P G 1992 Rev. Mod. Phys. 64 645Google Scholar

    [19]

    Mitra S, Nguyen T B, Doroodchi E, Pareek V, Joshi J B, Evans G M 2016 Chem. Eng. Sci. 149 181Google Scholar

    [20]

    杨卧龙 2017 博士学位论文 (北京: 华北电力大学)

    Yang W L 2017 Ph. D. Dissertation (Beijing: North China Electric Power University) (in Chinese)

    [21]

    Clanet C, BéGUIN, CéDRIC, Richard D, QUéRé D 2004 J. Fluid Mech. 517 199Google Scholar

    [22]

    Khojasteh D, Bordbar A, Kamali R, Marengo M 2017 Int. J. Comput. Fluid D. 31 310Google Scholar

    [23]

    汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51Google Scholar

    Wang Y E, Zhou J H, Qing Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock. 31 51Google Scholar

    [24]

    王辉 2013硕士学位论文 (大连: 大连理工大学)

    Wang H R 2013 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [25]

    Yasmin D, Mitra S, Evans G M 2019 Miner. Eng. 131 111Google Scholar

    [26]

    Gennes P G D 1985 Rev. Mod. Phys. 57 827Google Scholar

    [27]

    Gibbs J W 1948 Nature. 124 119Google Scholar

    [28]

    Pethica B A 1977 J. Colloid Interf. Sci. 62 567Google Scholar

    [29]

    Guzzardi L, Rosso R 2007 J. Food Compos. Anal. 40 19Google Scholar

  • [1] 李康睿, 王军, 夏国栋. 基于羟基化Janus碳纳米管的纳米流体导热特性研究. 物理学报, 2025, 74(6): . doi: 10.7498/aps.74.20241657
    [2] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [3] 杨建志, 何永清, 焦凤, 王进. 液体弹珠碰撞固着液滴的影响因素及动力学分析. 物理学报, 2023, 72(16): 164702. doi: 10.7498/aps.72.20230815
    [4] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性. 物理学报, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [5] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [6] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [7] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [9] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [11] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性. 物理学报, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [12] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究. 物理学报, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [13] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟. 物理学报, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [14] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [15] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [16] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [19] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [20] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
计量
  • 文章访问数:  8515
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-09-10
  • 上网日期:  2021-02-03
  • 刊出日期:  2021-02-20

/

返回文章
返回