搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体弹珠碰撞固着液滴的影响因素及动力学分析

杨建志 何永清 焦凤 王进

引用本文:
Citation:

液体弹珠碰撞固着液滴的影响因素及动力学分析

杨建志, 何永清, 焦凤, 王进

Influence factors and kinetic analysis of liquid marbles colliding with sessile droplets

Yang Jian-Zhi, He Yong-Qing, Jiao Feng, Wang Jin
PDF
HTML
导出引用
  • 液体弹珠具有不润湿/不黏附, 以及与外界进行选择性物质交换等特性, 可以作为微量液滴承载体, 广泛运用于微流控、化学/生物微反应器等新兴领域. 碰撞可作为弹珠进行物质传递的一种操控方法, 区别于液滴-液滴或弹珠-弹珠的碰撞, 弹珠与液滴的碰撞行为更为丰富与复杂, 对其的研究可为以弹珠为媒介的物质的有效传递奠定理论基础. 本文利用高速摄像机拍摄技术, 捕捉了液体弹珠与固着液滴碰撞过程, 探究了不同奥内佐格数(Oh)以及壁面亲/疏水性(接触角: θ 为35.4°—124.5°)下弹珠与液滴之间的碰撞过程. 结果表明: 在亲水壁面时, 以翻越的形式与液滴结束碰撞; 当改用疏水壁面后, 以回弹行为取代翻越; 当壁面疏水性提高接触角达到θ = 124.5°时, 有效碰撞面积增大, 碰撞后在界面产生的波动使弹珠表面的颗粒迁移, 出现裸露区域, 形成液桥后快速完成聚结-合并(聚并). 弹珠与固着液滴碰撞后, 会出现三种运动行为即翻越、回弹以及聚并.
    Liquid marbles can be used as micro-droplet carriers due to their non-wetting, non-adhesion, and selective material exchange with the outside environment, wide applications in emerging fields like microfluidics and chemical, biological, and chemical microreactors. The collision can be used as a method of manipulating material transfer by marbles, which has significance and research value. Unlike droplet-droplet or marble-marble collisions, the collision behavior between marbles and droplets is more abundant and complex. The study of this process is vital for effectively transferring the material with marble as the medium. In this paper, high-speed camera filming technology is used to capture the collision process between liquid marbles and sessile droplets. The collision process between marbles and droplets is investigated for different Ohnesorge numbers ($Oh$) and wall hydrophilicity/hydrophobicity (contact angle: $\theta \sim 35.4^\circ \text{–}124.5^\circ$). This research demonstrates that at the hydrophilic interface, the contact angle formed between the droplet and the interface is small (θ ≤ 61.3°), and when the collision occurs, the effective contact area is small, which cannot form a larger obstruction to the forward motion of the marble and ends the collision with the droplet in the form of overturning; when the hydrophobic interface is changed into the hydrophobic interface, the effective collision area increases, which forms a larger obstruction to the forward motion of the marble and replaces overturning with rebound behavior; when the hydrophobicity of the interface increases to θ = 124.5°, the effective collision area becomes larger, and the fluctuations generated at the interface after the collision cause the particles on the surface of the marble to migrate and appear in the exposed area, forming a liquid bridge and then quickly completing the aggregation. When marbles and sessile droplets collide, three distinct motion behaviors emerge: climbing, rebound, and coalescence-merging (coalescence).
      通信作者: 焦凤, jiaofeng0526@163.com
    • 基金项目: 国家自然科学基金(批准号: 11962010, 11502102)、重庆市自然科学基金(批准号: cstc2021jcyj-msxmX0910)和云南省教育厅科学研究基金(批准号: 2023J0139)资助的课题.
      Corresponding author: Jiao Feng, jiaofeng0526@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11962010, 11502102), the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0910), and the Scientific Research Foundation of the Education Department of Yunnan Province, China (Grant No. 2023J0139).
    [1]

    Kim J 2007 Int. J. Heat Fluid Flow 28 753Google Scholar

    [2]

    Kim S Y, Choi B G, Baek W K, Park S H, Park S W, Shin J w, Kang I H 2019 Smart Mater. Struct. 28 035025Google Scholar

    [3]

    Watson G S, Green D W, Schwarzkopf L, Li X, Cribb B W, Myhra S, Watson J A 2015 Acta Biomater. 21 109Google Scholar

    [4]

    Kelleher S M, Habimana O, Lawler J E, O’ Reilly B, Daniels S, Casey E, Cowley A 2016 ACS Appl. Mater. Interfaces 8 14966Google Scholar

    [5]

    Park K C, Chhatre S S, Srinivasan S, Cohen R E, McKinley G H 2013 Langmuir. 29 13269Google Scholar

    [6]

    Chen H, Li A, Zhang Y, Zhang X, Zang D 2022 Phys. Fluids. 34 092108Google Scholar

    [7]

    罗新杰, 张熙, 冯玉军 2020 物理化学学报 36 1910007Google Scholar

    Luo X J, Zhang X, Feng Y J 2020 Acta Phys. Chim. Sin. 36 1910007Google Scholar

    [8]

    Aussillous P, Quéré D 2001 Nature 411 924Google Scholar

    [9]

    Thomson J J, Newall H F 1886 Proceedings of the Royal Society of London 39 417Google Scholar

    [10]

    Worthington A M 1877 Proceedings of the Royal Society of London 25 261Google Scholar

    [11]

    Worthington A M 1883 Proceedings of the Royal Society of London 34 217Google Scholar

    [12]

    Menchaca-rocha A, Martínez-Dávalos A, Nuñez R, Popinet S, Zaleski S 2001 Phys. Rev. E 63 046309Google Scholar

    [13]

    Aarts D G, Lekkerkerker H N, Guo H, Wegdam G H, Bonn D 2005 Phys. Rev. Lett. 95 164503Google Scholar

    [14]

    毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 物理学报 61 184702Google Scholar

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702Google Scholar

    [15]

    王凯宇, 庞祥龙, 李晓光 2021 物理学报 70 076801Google Scholar

    Wang K Y, Pang X L, Li X G 2021 Acta Phys. Sin. 70 076801Google Scholar

    [16]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [17]

    Mukherjee S, Abraham J 2007 J Colloid Interface Sci. 312 341Google Scholar

    [18]

    Jin J, Ooi C H, Dao D V, Nguyen N T 2017 Micromachines-Basel 8 336Google Scholar

    [19]

    Zhan H, Lu C, Liu C, Wang Z, Lü C, Liu Y 2021 Phys. Rev. Lett. 126 234503Google Scholar

    [20]

    Han X, Tang X, Zhao H, Li W, Li J, Wang L 2021 Mater. Horiz 8 3133Google Scholar

    [21]

    Zhang B, Sanjay V, Shi S, Zhao Y, Lü C, Feng X, Lohse D 2022 Phys. Rev. Lett. 129 104501Google Scholar

    [22]

    Han X, Tang X, Zhao H, Li J, Li W, Wang L 2022 Adv. Mater. Interfaces 9 2101565Google Scholar

    [23]

    Bormashenko E, Pogreb R, Balter R, Aharoni H, Bormashenko Y, Grynyov R, Mashkevych L, Aurbach D, Gendelman O 2015 Colloid. Polym. Sci. 293 2157Google Scholar

    [24]

    Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks B P 2013 Soft Matter 9 5067Google Scholar

    [25]

    Draper T C, Fullarton C, Mayne R, Phillips N, Canciani G E, de Lacy Costello B P J, Adamatzky A I 2019 Soft Matter 15 3541Google Scholar

    [26]

    Azizian P, Mohammadrashidi M, Abbas Azimi A, Bijarchi M A, Shafii M B, Nasiri R 2022 Micromachines-Basel 14 49Google Scholar

    [27]

    Davis R H, Schonberg J A, Rallison J M 1989 Phys. Fluids A 1 77Google Scholar

    [28]

    Zhang P, Law C K 2011 Phys. Fluids 23 042102Google Scholar

    [29]

    Chen Y, Liu Z, Zhu D, Handschuh-Wang S, Liang S, Yang J, Kong T, Zhou X, Liu Y, Zhou X 2017 Mater. Horizons 4 591Google Scholar

    [30]

    Ooi C H, Nguyen A V, Evans G M, Dao D V, Nguyen N T 2016 Sci. Rep. 6 1Google Scholar

    [31]

    Yan X, Zhang L, Sett S, Feng L, Zhao C, Huang Z, Vahabi H, Kota A K, Chen F, Miljkovic N 2019 ACS Nano 13 1309Google Scholar

    [32]

    Yang J, He Y, Jiao F, Wang M H 2022 Langmuir 38 16024Google Scholar

    [33]

    Backholm M, Molpeceres D, Vuckovac M, Nurmi H, Hokkanen M J, Jokinen V, Timonen J V, Ras R H 2020 Commun. Mater. 1 64Google Scholar

    [34]

    Yang X Y, Li G H, Huang X, Yu Y S 2022 Langmuir 38 11666Google Scholar

  • 图 1  实验总体装置示意图

    Fig. 1.  Schematic of the overall experimental setup.

    图 2  弹珠与液滴接触界面变化 (a) 界面亲/疏水性影响形成的空气夹层的大小; (b) 弹珠界面波动对颗粒嵌入程度的影响; (c) 弹珠与液滴碰撞接触后波的形成以及界面颗粒的迁移

    Fig. 2.  Schematic representation of interfacial changes in the contact between marbles and liquid droplets: (a) Effect of interfacial hydrophilicity/hydrophobicity on the size of the formed air interlayer; (b) effect of the fluctuation of the marble interface on the degree of particle embedding; (c) formation of waves after collisional contact between the marble and the droplet and the migration of interfacial particles.

    图 4  弹珠与液滴碰撞的两种回弹情况 (a) 固着液滴在疏水界面上的回弹碰撞(体积比: 弹珠/液滴为0.164); (b), (c) 固着液滴在高疏水界面上的回弹碰撞(体积比: 弹珠/液滴为0.75), 以及液滴与弹珠在高疏水界面碰撞过程中的变形情况及Oh变化曲线

    Fig. 4.  Two rebound cases of marble-droplet collisions: (a) Rebound collision of a sessile droplet at the hydrophobic interface (Volume ratio: 0.164 for marble/droplet); (b), (c) rebound collision of a sessile droplet at the highly hydrophobic interface (Volume ratio: 0.75 for marble/droplet), as well as deformation of a droplet and marble during the collision with a droplet at a highly hydrophobic interface, and the Oh curve

    图 3  弹珠在翻越液滴的过程中的形态变化(以30 μL为例) (a) 玻璃基底上弹珠运动过程Oh分布; (b) 侧面投影面积变化; (c) 弹珠运动过程中实时拍摄图像

    Fig. 3.  Morphological changes of marbles during overturning droplets (30 μL for example): (a) Oh distribution during marble motion on glass substrate; (b) change of lateral projection area; (c) real-time image taken during marble motion.

    图 5  (a) 同体积弹珠在不同疏水性界面上碰撞液滴形态变化图; (b) 碰撞过程中液滴与弹珠侧面积变化; (c) 碰撞过程中液滴与弹珠Oh变化; (d) 聚并发生后表面颗粒的移动情况

    Fig. 5.  (a) Variation of droplet morphology of the same volume of marbles colliding at different hydrophobic interfaces; (b) variation of droplet and marble side area during the collision; (c) variation of droplet and marble Oh during the collision; (d) movement of surface particles after droplet coalescence occurs.

    图 6  弹珠完成翻越后液滴以摇摆振荡的方式消耗能量

    Fig. 6.  Droplet consumes energy by swinging and oscillating after the marble completes its overturning.

    表 1  基底材料及对应的静态接触角θ

    Table 1.  Substrate materials and corresponding static contact angles θ.

    基底材料玻璃界面特氟龙胶带乙醇-SiO2
    喷雾改性
    $ \theta $$35.4^\circ \leqslant \theta \leqslant 61.3^\circ$$ \approx 95.2^\circ $$ \approx 124.5^\circ $
    特性亲水疏水高疏水
    下载: 导出CSV
  • [1]

    Kim J 2007 Int. J. Heat Fluid Flow 28 753Google Scholar

    [2]

    Kim S Y, Choi B G, Baek W K, Park S H, Park S W, Shin J w, Kang I H 2019 Smart Mater. Struct. 28 035025Google Scholar

    [3]

    Watson G S, Green D W, Schwarzkopf L, Li X, Cribb B W, Myhra S, Watson J A 2015 Acta Biomater. 21 109Google Scholar

    [4]

    Kelleher S M, Habimana O, Lawler J E, O’ Reilly B, Daniels S, Casey E, Cowley A 2016 ACS Appl. Mater. Interfaces 8 14966Google Scholar

    [5]

    Park K C, Chhatre S S, Srinivasan S, Cohen R E, McKinley G H 2013 Langmuir. 29 13269Google Scholar

    [6]

    Chen H, Li A, Zhang Y, Zhang X, Zang D 2022 Phys. Fluids. 34 092108Google Scholar

    [7]

    罗新杰, 张熙, 冯玉军 2020 物理化学学报 36 1910007Google Scholar

    Luo X J, Zhang X, Feng Y J 2020 Acta Phys. Chim. Sin. 36 1910007Google Scholar

    [8]

    Aussillous P, Quéré D 2001 Nature 411 924Google Scholar

    [9]

    Thomson J J, Newall H F 1886 Proceedings of the Royal Society of London 39 417Google Scholar

    [10]

    Worthington A M 1877 Proceedings of the Royal Society of London 25 261Google Scholar

    [11]

    Worthington A M 1883 Proceedings of the Royal Society of London 34 217Google Scholar

    [12]

    Menchaca-rocha A, Martínez-Dávalos A, Nuñez R, Popinet S, Zaleski S 2001 Phys. Rev. E 63 046309Google Scholar

    [13]

    Aarts D G, Lekkerkerker H N, Guo H, Wegdam G H, Bonn D 2005 Phys. Rev. Lett. 95 164503Google Scholar

    [14]

    毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 物理学报 61 184702Google Scholar

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702Google Scholar

    [15]

    王凯宇, 庞祥龙, 李晓光 2021 物理学报 70 076801Google Scholar

    Wang K Y, Pang X L, Li X G 2021 Acta Phys. Sin. 70 076801Google Scholar

    [16]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [17]

    Mukherjee S, Abraham J 2007 J Colloid Interface Sci. 312 341Google Scholar

    [18]

    Jin J, Ooi C H, Dao D V, Nguyen N T 2017 Micromachines-Basel 8 336Google Scholar

    [19]

    Zhan H, Lu C, Liu C, Wang Z, Lü C, Liu Y 2021 Phys. Rev. Lett. 126 234503Google Scholar

    [20]

    Han X, Tang X, Zhao H, Li W, Li J, Wang L 2021 Mater. Horiz 8 3133Google Scholar

    [21]

    Zhang B, Sanjay V, Shi S, Zhao Y, Lü C, Feng X, Lohse D 2022 Phys. Rev. Lett. 129 104501Google Scholar

    [22]

    Han X, Tang X, Zhao H, Li J, Li W, Wang L 2022 Adv. Mater. Interfaces 9 2101565Google Scholar

    [23]

    Bormashenko E, Pogreb R, Balter R, Aharoni H, Bormashenko Y, Grynyov R, Mashkevych L, Aurbach D, Gendelman O 2015 Colloid. Polym. Sci. 293 2157Google Scholar

    [24]

    Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks B P 2013 Soft Matter 9 5067Google Scholar

    [25]

    Draper T C, Fullarton C, Mayne R, Phillips N, Canciani G E, de Lacy Costello B P J, Adamatzky A I 2019 Soft Matter 15 3541Google Scholar

    [26]

    Azizian P, Mohammadrashidi M, Abbas Azimi A, Bijarchi M A, Shafii M B, Nasiri R 2022 Micromachines-Basel 14 49Google Scholar

    [27]

    Davis R H, Schonberg J A, Rallison J M 1989 Phys. Fluids A 1 77Google Scholar

    [28]

    Zhang P, Law C K 2011 Phys. Fluids 23 042102Google Scholar

    [29]

    Chen Y, Liu Z, Zhu D, Handschuh-Wang S, Liang S, Yang J, Kong T, Zhou X, Liu Y, Zhou X 2017 Mater. Horizons 4 591Google Scholar

    [30]

    Ooi C H, Nguyen A V, Evans G M, Dao D V, Nguyen N T 2016 Sci. Rep. 6 1Google Scholar

    [31]

    Yan X, Zhang L, Sett S, Feng L, Zhao C, Huang Z, Vahabi H, Kota A K, Chen F, Miljkovic N 2019 ACS Nano 13 1309Google Scholar

    [32]

    Yang J, He Y, Jiao F, Wang M H 2022 Langmuir 38 16024Google Scholar

    [33]

    Backholm M, Molpeceres D, Vuckovac M, Nurmi H, Hokkanen M J, Jokinen V, Timonen J V, Ras R H 2020 Commun. Mater. 1 64Google Scholar

    [34]

    Yang X Y, Li G H, Huang X, Yu Y S 2022 Langmuir 38 11666Google Scholar

  • [1] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [2] 郑志伟, 李大树, 仇性启, 崔运静. 中空液滴碰撞水平壁面数值分析. 物理学报, 2017, 66(1): 014704. doi: 10.7498/aps.66.014704
    [3] 郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor-法在接触约束多体系统动力学中的应用. 物理学报, 2017, 66(16): 164501. doi: 10.7498/aps.66.164501
    [4] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 碰撞参数对磁化电负性等离子体鞘层结构的影响. 物理学报, 2016, 65(24): 245201. doi: 10.7498/aps.65.245201
    [5] 蓝春波, 秦卫阳. 带碰撞双稳态压电俘能系统的俘能特性研究. 物理学报, 2015, 64(21): 210501. doi: 10.7498/aps.64.210501
    [6] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [7] 胡俊, 游磊. 三维空间行人疏散的元胞自动机模型. 物理学报, 2014, 63(8): 080507. doi: 10.7498/aps.63.080507
    [8] 王志萍, 朱云, 吴亚敏, 张秀梅. 质子与羟基碰撞的含时密度泛函理论研究. 物理学报, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [9] 令狐荣锋, 徐梅, 吕兵, 宋晓书, 杨向东. He原子与N2分子相互作用势的理论研究. 物理学报, 2013, 62(1): 013103. doi: 10.7498/aps.62.013103
    [10] 徐梅, 王晓璐, 令狐荣锋, 杨向东. Ne原子与HF分子碰撞振转激发分波截面的研究. 物理学报, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [11] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [12] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性. 物理学报, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [13] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [14] 王继志, 王美琴, 王英龙. 一种基于混沌的带密钥Hash函数的碰撞问题及分析. 物理学报, 2008, 57(5): 2737-2742. doi: 10.7498/aps.57.2737
    [15] 李 弘, 苏 铁, 欧阳亮, 王慧慧, 白小燕, 陈志鹏, 刘万东. 电子束产生大尺度等离子体过程的数值模拟研究. 物理学报, 2006, 55(7): 3506-3513. doi: 10.7498/aps.55.3506
    [16] 王继志, 王英龙, 王美琴. 一类基于混沌映射构造Hash函数方法的碰撞缺陷. 物理学报, 2006, 55(10): 5048-5054. doi: 10.7498/aps.55.5048
    [17] 段芳莉, 雒建斌, 温诗铸. 纳米粒子与单晶硅表面碰撞的反弹机理研究. 物理学报, 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [18] 谷云鹏, 马腾才. 粒子束对玻姆鞘层判据的影响. 物理学报, 2003, 52(5): 1196-1202. doi: 10.7498/aps.52.1196
    [19] 王利光, 王 军. O5+离子与H原子碰撞时电子俘获概率的计算. 物理学报, 2003, 52(2): 312-315. doi: 10.7498/aps.52.312
    [20] 李延龄, 罗成林. Si60团簇的结构及其与Si(111)面间碰撞的分子动力学模拟. 物理学报, 2002, 51(11): 2589-2594. doi: 10.7498/aps.51.2589
计量
  • 文章访问数:  3740
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-06-07
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回