搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碰撞参数对磁化电负性等离子体鞘层结构的影响

刘惠平 邹秀 邹滨雁 邱明辉

引用本文:
Citation:

碰撞参数对磁化电负性等离子体鞘层结构的影响

刘惠平, 邹秀, 邹滨雁, 邱明辉

Effect of collision parameter on magnetized electronegative plasma sheath structure

Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui
PDF
导出引用
  • 数值研究了离子马赫数的取值和碰撞参数对由热电子、热负离子和冷正离子构成的磁化电负性等离子体鞘层结构的影响.通过理论推导得到了鞘层模型的玻姆判据的表达式,并得到了不同离子马赫数情况下鞘层的正离子密度分布和净电荷分布曲线,还进一步得到了几个不同碰撞参数下鞘层的带电粒子密度、净电荷以及电势分布曲线.结果表明:离子马赫数取值不同对应不同的鞘层结构;碰撞使鞘层中正离子密度增加,使电子密度更快减小到零,对负离子密度分布影响不明显;碰撞使净电荷密度的峰值幅度增加并向鞘层边缘移动,使鞘层中电势值升高并使鞘层厚度减小.
    The structure of an electronegative plasma sheath in an oblique magnetic field is investigated. Moreover, the collisions between positive ions and neutral particles are taken into account. It is assumed that the system consists of hot electrons, hot negative ions, and cold positive ions. Also the negative ions and the electrons are assumed to be described by the Boltzmann distributions of their own temperatures, and the accelerated positive ions are treated by the continuity and momentum balance equations through the sheath region. In addition, it is assumed that the collision cross section has a power law dependence on the positive velocity. After theoretical derivation, an exact expression of sheath criterion is obtained. The numerical simulation results include the density distributions of the positive ions for different invariable ion Mach numbers satisfying Bohm criterion, and the comparison of net space charge distribution between variable and invariable ion Mach numbers. Furthermore, three kinds of charged particle densities, the net space charges, and the spatial electric potentials in the sheath are studied numerically for different collision parameters under the condition of the fixed ion Mach number. The results show that the ion Mach number has not only the lower limit but also the upper limit. The ion Mach number affects the sheath structure by influencing the distribution of the positive ion density, and different conclusions can be obtained because ion Mach number is adopted as variable or invariable value when discussing the effects of the other variables which can result in a variety of the ion Mach numbers on the sheath formation. The reason is that the actual sheath structure modification brought on by the variation of a parameter can be divided into two parts. One is the sheath formation change caused directly by the variation of the parameter, and the other is the sheath formation change caused by the Bohm criterion modification which the variation of the parameter results in. Therefore, an identical ion Mach number should be adopted when studying the direct effects of a parameter variety on plasma sheath structure. In addition, it is concluded that the collisions between positive ions and neutral particles make positive ion density curve higher and electron density curve lower than the case without collisions. Negative ion density does not change significantly no matter whether there exists collision. Besides, there is a peak in the profile of the net space charge while in the presence of ion-neutral collision, and the net space charge peak moves toward the sheath edge. The spatial potential increases and the sheath thickness decreases on account of the presence of the collisions between ions and neutral particles.
      通信作者: 刘惠平, lhp@djtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:10605008,51372026)资助的课题.
      Corresponding author: Liu Hui-Ping, lhp@djtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10605008, 51372026).
    [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229

    [2]

    Femandez-Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937

    [3]

    Femandez-Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Phys. 60 81

    [5]

    Li M, Michael A V, Steven K D, Michael J B 2000 IEEE Trans. Plasma Sci. 28 248

    [6]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [7]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501

    [8]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Com. Phy. 27 883 (in Chinese)[宫野, 段萍, 张建红, 邹秀, 刘金远, 刘悦2010计算物理 27 883]

    [9]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032

    [10]

    Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹秀, 籍延坤, 邹滨雁2010物理学报 59 1902]

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma Phys. 76 247

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201

    [14]

    Ghomi H, Khoramabadi M 2011 J. Fusion Energ. 30 481

    [15]

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204 (in Chinese)[邱明辉, 刘惠平, 邹秀2012物理学报 61 155204]

    [16]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506

    [17]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503

    [18]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [19]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507

    [20]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108

    [21]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501

    [22]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201 (in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012物理学报 61 035201]

    [23]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505

  • [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229

    [2]

    Femandez-Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937

    [3]

    Femandez-Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Phys. 60 81

    [5]

    Li M, Michael A V, Steven K D, Michael J B 2000 IEEE Trans. Plasma Sci. 28 248

    [6]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [7]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501

    [8]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Com. Phy. 27 883 (in Chinese)[宫野, 段萍, 张建红, 邹秀, 刘金远, 刘悦2010计算物理 27 883]

    [9]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032

    [10]

    Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹秀, 籍延坤, 邹滨雁2010物理学报 59 1902]

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma Phys. 76 247

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201

    [14]

    Ghomi H, Khoramabadi M 2011 J. Fusion Energ. 30 481

    [15]

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204 (in Chinese)[邱明辉, 刘惠平, 邹秀2012物理学报 61 155204]

    [16]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506

    [17]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503

    [18]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [19]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507

    [20]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108

    [21]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501

    [22]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201 (in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012物理学报 61 035201]

    [23]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [4] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [5] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [6] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [7] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [8] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  4563
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 修回日期:  2016-08-12
  • 刊出日期:  2016-12-05

/

返回文章
返回