搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于定向传质驱动的冷凝微液滴群三维指纹片段重构技术

张卫 牛喻樱 刘瑞 赵玉刚

引用本文:
Citation:

基于定向传质驱动的冷凝微液滴群三维指纹片段重构技术

张卫, 牛喻樱, 刘瑞, 赵玉刚

3D fingerprint fragment reconstruction of condensed microdroplet clusters driven by directed mass transfer

ZHANG Wei, NIU Yuying, LIU Rui, ZHAO Yugang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 指纹识别技术作为现代生活安全和信息保护的关键手段, 已广泛应用于日常生活的诸多领域. 传统2D指纹信息承载量不足, 难以满足高安全性需求. 近年提出的几种3D指纹技术虽各有优势, 但采样程序复杂且依赖于大型设备等问题限制了其实际应用. 本文提出一种基于冷凝微滴群的简单快速三维指纹片段重构技术, 表明按压冷表面时指纹犁沟约束的水蒸气通过扩散凝结所形成的冷凝微滴群蕴含着三维指纹信息, 并根据冷凝微滴群的大小分布重建指纹片段. 通过与实测的指纹三维数据对比分析, 发现重构获取的数据与真实的指纹数据误差仅为9.3%, 具有良好的一致性. 该三维指纹重构方法可以便捷获取高信息承载量的指纹片段用于生物个体确认, 随着技术的不断优化和完善, 这一方法有助于在身份认证、安全防范及个人信息保护等领域发挥重要作用.
    Fingerprint recognition technology plays a critical role in modern security and information protection. Traditional 2D fingerprint recognition methods are still limited due to an imbalance between growing security demands and inefficiency of encoding detailed information. Although various 3D fingerprint technologies have been introduced recently, their practical applications are restricted by complex sampling procedures and bulky equipment. This paper proposes a new 3D fingerprint fragments reconstruction method based on the condensation of microdroplet clusters, resulting in efficiently extracting detailed structural information from fingerprint patterns. By identifying the unique topological features of fingerprint valleys, a micrometer-scale vapor transport model is developed. A differential approach is used to divide the microdroplet clusters formed when a finger is pressed on a cold surface into discrete units. In each unit, the diffusion distance and mass transfer in the condensation process are calculated. Nonlinear regression techniques are then utilized to reconstruct the 3D fingerprint fragments. Furthermore, the experimental validation shows excellent consistency with premeasured fingerprint data, with a reconstruction error of less than 9.3%. It has made a significant improvement in capturing high-density fingerprint data in a short period of time, completing the data acquisition in less than 1 second. Compared with ultrasound imaging techniques, this method significantly shortens the acquisition time, which typically involve complex procedures. Additionally, it offers a more efficient alternative to deep learning methods, which require extensive data training and computational processes. This 3D fingerprint reconstruction method provides an efficient, low-cost and easy-to-operate solution. It holds the potential to significantly enhance personal identification and information protection systems, contributing to the advancement of 3D fingerprint recognition technology in practical applications.
  • 图 1  基于冷凝液滴特征分析的3D指纹重构流程图

    Fig. 1.  3D Fingerprint reconstruction process based on condensed droplet characteristics.

    图 2  冷凝液滴图像采集 (a) 冷凝液滴发生图像采集装置; (b) 冷凝液滴带分布图; (c) 指纹结构显微图

    Fig. 2.  Condensate droplet image capture: (a) Image acquisition setup for condensed drop; (b) distribution of condensation droplet bands; (c) microscopic image of fingerprint structure.

    图 3  不同基底表面特性对液滴行为的影响比较 (a) 普通硅片与疏水硅片的接触角测量; (b) 普通硅片与疏水硅片上液滴冷凝效果对比

    Fig. 3.  Comparison of the effect of Substrate surface properties on droplet behavior: (a) Contact angle measurements on standard and hydrophobic silicon wafers; (b) droplet condensation performance on standard and hydrophobic silicon wafers.

    图 4  毛细管模拟实验图 (a) 模具结构正视图; (b) 模具结构俯视图; (c) 模具按压冷表面所得冷凝液滴分布图

    Fig. 4.  Capillary simulation experiment: (a) Front view of the mold structure; (b) top view of the mold structure; (c) distribution of condensate drops on the cold surface pressed by the mold.

    图 5  指纹犁沟模型建立及其有效性分析 (a) 犁沟内水蒸气输运微观示意图; (b) 冷凝液滴传质面积计算示意图; (c) 指纹片段冷凝微滴群图像; (d) 指纹片段水蒸气传质距离图; (e) 指纹片段重构结果3D图

    Fig. 5.  Establishment of the fingerprint valley model and effectiveness analysis: (a) Schematics of the microscopic vapor transfer within the valley; (b) schematic of mass transfer area calculation for condensed drops; (c) image of condensed droplet clusters on the fingerprint segment; (d) vapor mass transfer distance within the fingerprint segment; (e) 3D reconstruction of the fingerprint segment.

    图 6  三维指纹重构 (a) 指纹样品激光扫描图; (b) 扫描所得指纹片段三维形貌; (c) 指纹片段对应冷凝液滴带分布图; (d) 重构所得指纹片段三维形貌

    Fig. 6.  3D reconstruction of fingerprints: (a) Laser scan of the fingerprint sample; (b) 3D morphology of the fingerprint segment derived from the scan; (c) distribution of condensation droplet bands corresponding to the fingerprint segment; (d) 3D morphology of the reconstructed fingerprint segment.

    图 7  2D轮廓图 (a) 原始指纹片段轮廓图; (b) 重构指纹片段轮廓图

    Fig. 7.  2D contour map: (a) Original fingerprint fragment contour map; (b) reconstructed fingerprint fragment contour map.

    图 8  三维指纹重构误差分析热图

    Fig. 8.  3D Fingerprint reconstruction error analysis heatmap.

    图 9  不同温湿度组合下的冷凝液滴分布与三维指纹重构形貌 (a) 冷凝液滴分布图; (b) 三维指纹重构片段形貌图

    Fig. 9.  Condensed droplet distribution and 3D fingerprint reconstruction morphology: (a) Distribution of condensed water droplets; (b) morphology of 3D fingerprint reconstruction fragment.

  • [1]

    Kolivand H, Asadianfam S, Akintoye K A, Rahim M S 2023 Multimed. Tools Appl. 82 33541Google Scholar

    [2]

    Li H, Wei P, Hu P 2021 IEEE T. Multimedia 24 594

    [3]

    Jan F, Min-Allah N, Agha S, Usman I, Khan I 2021 Multimed. Tools Appl. 80 4579Google Scholar

    [4]

    Fei L K, Lu G M, Jia W, Teng S H, Zhang D 2018 IEEE T. Syst. Man Cy. A 49 346

    [5]

    Lopes A T, De Aguiar E, De Souza A F, Oliveira-Santos T 2017 Pattern Recogn. 61 610Google Scholar

    [6]

    Pinkus H 1963 JAMA 183 979

    [7]

    Tian J Z, Zhang J Y, Li X Y, Zhou C C, Wu R L, Wang Y C, Huang S Y 2021 IEEE Access 9 160855Google Scholar

    [8]

    Niu L H, Mantri N, Li C G, Xue C, Pang E 2011 TCM 6 18

    [9]

    Zhang J Q, Shen G X, Saad W, Chowdhury K 2023 IEEE Commun. Mag. 61 110

    [10]

    Zhou Z Y, Kumar A 2023 IEEE T. Inf. Forensics Secur. 19 441

    [11]

    Cui Z, Feng J J, Li S H, Lu J W, Zhou J 2018 IEEE T. Inf. Forensics Secur. 13 3153Google Scholar

    [12]

    An B W, Heo S, Ji S, Bien F, Park J U 2018 Nat. Commun. 9 2458Google Scholar

    [13]

    Yi Y, Cao L C, Guo W, Luo Y P, Feng J J, He Q S, Jin G F 2013 Opt. Express 21 17108Google Scholar

    [14]

    Liu F, Zhang D, Shen L L 2015 Neurocomputing 168 599Google Scholar

    [15]

    Xie W, Song Z, Chung R 2013 Opt. Eng. 52 103103Google Scholar

    [16]

    Chatterjee A, Bhatia V, Prakash S 2017 Opt. Lasers Eng. 95 1

    [17]

    Wang Y C, Lau D L, Hassebrook L G 2010 Appl. Opt. 49 592Google Scholar

    [18]

    Labati R D, Genovese A, Piuri V, Scotti F 2016 IEEE T. Syst. Man Cy. B 46 202Google Scholar

    [19]

    Jiang X Y, Lu Y P, Tang H Y, Tsai J M, Ng E J, Daneman M J, Boser B E, Horsley D A 2017 Microsyst. Nanoeng. 3 17059Google Scholar

    [20]

    Zhao C W, Li J, Lin M, Chen X, Liu Y 2022 IEEE T. Ultrason. Ferr. 69 2965Google Scholar

    [21]

    Saijo Y, Kobayashi K, Okada N, Hozumi N, Hagiwara Y, Tanaka A, Iwamoto T 2008 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Aug 20-25, 2008 p2173

    [22]

    李柯林, 黄丽淇, 杨洋 2021 电子测试 15 124Google Scholar

    Li K L, Huang L Q, Yang Y 2021 Electronic Test. 15 124Google Scholar

    [23]

    Liu Y H, Zhou B C, Han C Y, Guo T D, Qin J 2020 Appl. Intell. 50 397Google Scholar

    [24]

    Shen G X, Zhang J Q, Marshall A, Peng L N, Wang X B 2021 IEEE J. Sel. Areas Commun. 39 2604Google Scholar

    [25]

    王崇杰, 刘媛媛, 张博超, 张倩妮, 刘金艳, 金鸽, 张敏 2014 物理学报 63 122801Google Scholar

    Wang C J, Liu Y Y, Zhang B C, Zhang Q N, Liu J Y, Jin G, Zhang M 2014 Acta Phys. Sin. 63 122801Google Scholar

    [26]

    吴春生, 李孝君, 吴浩 2022 刑事技术 47 88

    Wu C S, Li X J, Wu H 2022 Forensic Sci. Tech. 47 88

    [27]

    Yin X M, Zhu Y F, Hu J K 2023 IEEE T. Pattern Anal. 45 8358

    [28]

    宋天一, 兰忠, 马学虎 2010 化工学报 61 839

    Song T Y, Lan Z, Ma X H 2010 CIESC J. 61 839

    [29]

    宫保强, 姚宝国, 周子晗 2022 传感技术学报 35 14Google Scholar

    Gong B Q, Yao B G, Zhou Z H 2022 Chin. J. Sensors Actuats. 35 14Google Scholar

    [30]

    Guo W, Calija L M M, Xu P, Liu K, A Kumar S 2021 Vacuum 190 110292Google Scholar

    [31]

    Fletcher N H 1958 J Chem. Phys. 29 572Google Scholar

    [32]

    曹治觉 2002 物理学报 51 25Google Scholar

    Cao Z J 2002 Acta Phys. Sin. 51 25Google Scholar

    [33]

    Hong Z, Beysens D 1995 Langmuir 11 627Google Scholar

    [34]

    Zhao Y G, Yang C 2016 Appl. Phys. Lett. 108 061065

    [35]

    Arda O, Göksügür N, Tüzün Y 2014 Clin. Dermatol. 32 3Google Scholar

    [36]

    Kückena M, Newell A C 2005 J. Theor. Biol. 235 71Google Scholar

    [37]

    Wertheim K, Maceo A 2002 J. Forensic Identif. 52 35

    [38]

    陈云国, 方力 2007 刑事技术 6 49Google Scholar

    Chen Y G, Fang L 2007 Forensic Sci. Technol. 6 49Google Scholar

    [39]

    Yum S M, Baek I K, Hong D, Kim J, Jung K, Kim S, Eom K, Jang J, Kim S, Sattorov M, Lee M G, Kim S, Adams M J, Park G S 2020 Proc. Natl. A. Sci. 117 31665Google Scholar

    [40]

    Sato T, Katayama C, Hayashida Y, Asanuma Y, Aoyama Y 2022 Exp. Dermatol. 31 1891Google Scholar

    [41]

    Yu X J, Xiong Q Z, Luo Y M, Wang N S, Wang L L, Tey H L, Liu L B 2016 IEEE Photonic. Tech. Lett. 29 70

    [42]

    Masi A D, Olla S, Presutti E 2019 J. Stat. Phys. 175 203Google Scholar

    [43]

    Aum J, Kim J H, Jeong J 2015 IEEE Photonic. Tech. Lett. 28 163

    [44]

    兰忠, 朱霞, 彭本利, 林勐, 马学虎 2012 物理学报 61 150508Google Scholar

    Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 150508Google Scholar

    [45]

    Skinner L M, Sambles J R 1972 J. Aerosol Sci. 3 199Google Scholar

  • [1] 马光鹏, 龚振权, 聂梦娇, 曹慧群, 屈军乐, 林丹樱, 于斌. 用于三维单颗粒示踪的多焦面双螺旋点扩散函数显微研究. 物理学报, doi: 10.7498/aps.73.20240271
    [2] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, doi: 10.7498/aps.72.20230863
    [3] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性. 物理学报, doi: 10.7498/aps.70.20210045
    [4] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, doi: 10.7498/aps.70.20201628
    [5] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, doi: 10.7498/aps.69.20200463
    [6] 陈珊珊, 刘幸, 刘之光, 李家方. 基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用. 物理学报, doi: 10.7498/aps.68.20191494
    [7] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.68.20181665
    [8] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响. 物理学报, doi: 10.7498/aps.68.20181567
    [9] 李丹, 张宝龙, 郭海成. 垂直向列型彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, doi: 10.7498/aps.64.140701
    [10] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, doi: 10.7498/aps.64.058705
    [11] 兰忠, 朱霞, 彭本利, 林勐, 马学虎. 滴状冷凝过程液滴自由表面温度场分析. 物理学报, doi: 10.7498/aps.61.150508
    [12] 陈小军, 张自丽, 葛辉良. 四光束干涉单次曝光构造含平面缺陷三维周期性微纳结构. 物理学报, doi: 10.7498/aps.61.174211
    [13] 张宝龙, 李丹, 戴凤智, 杨世凤, 郭海成. 彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, doi: 10.7498/aps.61.040701
    [14] 程雪苹, 林机, 韩平. 三维非线性Schr?dinger方程的直接微扰方法. 物理学报, doi: 10.7498/aps.59.6752
    [15] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, doi: 10.7498/aps.55.4774
    [16] 唐 鑫, 张 超, 张庆瑜. Cu(111)三维表面岛对表面原子扩散影响的分子动力学研究. 物理学报, doi: 10.7498/aps.54.5797
    [17] 闵敬春. 滴状冷凝中液滴的内外压差及临界半径. 物理学报, doi: 10.7498/aps.51.2730
    [18] 叶笑蓉, 曹佑安, 杨奇斌. 三维晶体学群的极大有限群的代数基础. 物理学报, doi: 10.7498/aps.50.1139
    [19] 解文方. 三维量子点的三电子系统. 物理学报, doi: 10.7498/aps.46.563
    [20] 沈宝华, 李超, 宋沧州, 徐增达. 扩散真空泵冷凝捕集器的液氮自动稳压装置. 物理学报, doi: 10.7498/aps.16.241
计量
  • 文章访问数:  460
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 修回日期:  2025-06-04
  • 上网日期:  2025-07-17

/

返回文章
返回