搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于定向传质驱动的冷凝微液滴群三维指纹片段重构技术

张卫 牛喻樱 刘瑞 赵玉刚

引用本文:
Citation:

基于定向传质驱动的冷凝微液滴群三维指纹片段重构技术

张卫, 牛喻樱, 刘瑞, 赵玉刚

3D Fingerprint Fragment Reconstruction of Condensed Microdroplet Clusters Driven by Directed Mass Transfer

ZHANG Wei, NIU Yuying, LIU Rui, ZHAO Yugang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 指纹识别技术作为现代生活安全和信息保护的关键手段,已广泛应用于日常生活的诸多领域。传统2D指纹信息承载量不足,难以满足高安全性需求。近年提出的几种3D指纹技术虽各有优势,但采样程序复杂且依赖于大型设备等问题限制了其实际应用。本文提出一种基于冷凝微滴群的简单快速三维指纹片段重构技术,表明按压冷表面时指纹犁沟约束的水蒸气通过扩散凝结所形成的冷凝微滴群蕴含着三维指纹信息,并根据冷凝微滴群的大小分布重建指纹片段。通过与实测的指纹三维数据对比分析,发现重构获取的数据与真实的指纹数据误差仅为9.3%,具有良好的一致性。该三维指纹重构方法可以便捷获取高信息承载量的指纹片段用于生物个体确认,随着技术的不断优化和完善,这一方法有助于在身份认证、安全防范及个人信息保护等领域发挥重要作用。
    Fingerprint recognition technology plays a critical role in modern security and information protection. Traditional 2D fingerprint recognition methods remain limited due to an imbalance between growing security demands and inefficiency of encoding detailed information. While various 3D fingerprint technologies have been introduced recently, their practical application is restricted by complex sampling procedures and bulky equipment. This paper proposes a new 3D fingerprint fragments reconstruction method based on the condensation of microdroplet clusters, resulting in efficiently extracting detailed structural information from fingerprint patterns. By identifying the distinctive topology features of fingerprint valleys, a micrometer-scale vapor transport model is developed to capture the condensation process. A differential approach is used to divide the microdroplet clusters, which are formed when a finger is pressed against a cold surface, into discrete units. In each unit, the diffusion distance and mass transfer during the condensation process are calculated. Nonlinear regression techniques are then applied to reconstruct the 3D fingerprint fragments. Furthermore, the experimental validation shows excellent consistency with premeasured fingerprint data, exhibiting a reconstruction error of less than 9.3%. It offers a significant improvement in capturing high-density fingerprint data within a short time frame, completing the data acquisition in less than 1 second. This method significantly reduces acquisition time compared to ultrasound imaging techniques, which typically involve complex procedures. Additionally, it offers a more efficient alternative to deep learning methods, which require extensive data training and computational processes. This 3D fingerprint reconstruction method provides an efficient, low-cost and easy to operate solution. It holds the potential to significantly enhance personal identification and information protection systems, contributing to the advancement of 3D fingerprint recognition technology in practical applications.
  • [1]

    Kolivand H, Asadianfam S, Akintoye K A, Rahim M S 2023 Multimedia Tools and Applications. 82 33541

    [2]

    Li H, Wei P, Hu P 2021 IEEE Transactions on Multimedia. 24 594

    [3]

    Jan F, Min-Allah N, Agha S, Usman I, Khan I 2021 Multimedia Tools and Applications. 80 4579

    [4]

    Fei L, Lu G, Jia W, Teng S, Zhang D 2018 IEEE Transactions on Systems, Man, and Cybernetics: Systems. 49 346

    [5]

    Lopes A T, De Aguiar E, De Souza A F, Oliveira-Santos T 2017 Pattern Recognition. 61 610

    [6]

    Pinkus H 1963 JAMA. 183 979

    [7]

    Tian J, Zhang J, Li X, Zhou C, Wu R, Wang Y, Huang S 2021 IEEE Access. 9 160855

    [8]

    Niu L, Mantri N, Li C G, Xue C, Pang E 2011 Chinese Medicine. 6 18

    [9]

    Zhang J, Shen G, Saad W, Chowdhury K 2023 IEEE Communications Magazine. 61 110

    [10]

    Zhou Z, Kumar A 2023 IEEE Transactions on Information Forensics and Security. 19 441

    [11]

    Cui Z, Feng J J, Li S H, Lu J W, Zhou J 2018 IEEE Transactions on Information Forensics and Security. 13 3153

    [12]

    An B W, Heo S, Ji S, Bien F, Park J-U 2018 Nature Communications. 9 2458

    [13]

    Yi Y, Cao L C, Guo W, Luo Y P, Feng J J, He Q S, Jin G F 2013 Optics Express. 21 17108

    [14]

    Liu F, Zhang D, Shen L 2015 Neurocomputing. 168 599

    [15]

    Xie W, Song Z, Chung R 2013 Optical Engineering. 52 103103

    [16]

    Chatterjee A, Bhatia V, Prakash S 2017 Optics and Lasers in Engineering. 95 1

    [17]

    Wang Y C, Lau D L, Hassebrook L G 2010 Applied Optics. 49 592

    [18]

    Labati R D, Genovese A, Piuri V, Scotti F 2016 IEEE Transactions on Systems, Man, and Cybernetics: Systems. 46 202

    [19]

    Jiang X, Lu Y, Tang H Y, Tsai J M, Ng E J, Daneman M J, Boser B E, Horsley D A 2017 Microsystems & nanoengineering. 3 1

    [20]

    Zhao C, Li J, Lin M, Chen X, Liu Y 2022 IEEE Transactions on Ultrasonics Ferroelectrics, and Frequency Control. 69 2965

    [21]

    Saijo Y, Kobayashi K, Okada N, Hozumi N, Hagiwara Y, Tanaka A, Iwamoto T 2008 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Aug 20-25, 2008 p2173

    [22]

    Li K L, Huang L Q, Yang Y 2021 Electronic Test. 15 124 (in Chinese) [李柯林, 黄丽淇,杨洋2021 电子测试 15 124]

    [23]

    Liu Y, Zhou B, Han C, Guo T, Qin J 2020 Applied Intelligence. 50 397

    [24]

    Shen G, Zhang J, Marshall A, Peng L, Wang X 2021 IEEE Journal on Selected Areas in Communications. 39 2604

    [25]

    Wang C J, Liu Y Y, Zhang B C, Zhang Q N, Liu J Y, Jin G, Zhang M 2014 Acta Phys. Sin. 63 129 (in Chinese) [王崇杰,刘媛媛,张博超,张倩妮,刘金艳,金鸽,张敏 2014 物理学报 63 129]

    [26]

    Wu C S, Li X J, Wu H 2022 Forensic Science and Technology. 47 88 (in Chinese) [吴春生,李孝君,吴浩 2022 刑事技术 47 88]

    [27]

    Yin X, Zhu Y, Hu J 2023 IEEE Transactions on Pattern Analysis and Machine Intelligence. 45 8358

    [28]

    Song T Y, Lan Z, Ma X H 2010 CIESC Journal. 61 839 (in Chinese) [宋天一,兰忠,马学虎2010 化工学报 61 839]

    [29]

    Gong B Q, Yao B G, Zhou Z H 2022 Chinese Journal of Sensors and Actuators. 35 14 (in Chinese) [宫保强,姚宝国,周子晗 2022 传感技术学报35 14]

    [30]

    Guo W, Calija L M M, Xu P, Liu K, A Kumar S 2021 Vacuum. 190 110292

    [31]

    Fletcher N H 1958 The Journal of Chemical Physics. 29 572

    [32]

    Cao Z J 2002 Acta Phys. Sin. 1 25 (in Chinese) [曹治觉 2002 物理学报 1 25]

    [33]

    Hong Z, Beysens D 1995 Langmuir. 11 627

    [34]

    ZHAO Y G, YANG C 2016 Applied Physics Letters. 108 061065

    [35]

    Arda O, Göksügür N, Tüzün Y 2014 Clinics in dermatology. 32 3

    [36]

    Kückena M, Newell A C 2005 Journal of Theoretical Biology. 235 71

    [37]

    Wertheim K, Maceo A 2002 Journal of Forensic Identification. 52 35

    [38]

    Chen Y G, Fang L 2007 Forensic Science and Technology. 6 49 (in Chinese) [陈云国,方力 2007 刑事技术6 49]

    [39]

    Yum S M, Baek I K, Hong D, Kim J, Jung K, Kim S, Eom K, Jang J, Kim S, Sattorov M, Lee M G, Kim S, Adams M J, Park G S 2020 Proceedings of the National Academy of Sciences. 117 31665

    [40]

    Sato T, Katayama C, Hayashida Y, Asanuma Y, Aoyama Y 2022 Experimental Dermatology. 31 1891

    [41]

    Yu X J, Xiong Q Z, Luo Y M, Wang N S, Wang L L, Tey H L, Liu L B 2016 IEEE Photonics Technology Letters. 29 70

    [42]

    Masi A D, Olla S, Presutti E 2019 Journal of Statistical Physics. 175 203

    [43]

    Aum J, Kim J H, Jeong J 2015 IEEE Photonics Technology Letters. 28 163

    [44]

    Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 96 (in Chinese) [兰忠,朱霞,彭本利,林勐,马学虎 2012 物理学报 61 96]

    [45]

    Skinner L M, Sambles J R 1972 Journal of Aerosol Science. 3 199

  • [1] 马光鹏, 龚振权, 聂梦娇, 曹慧群, 屈军乐, 林丹樱, 于斌. 用于三维单颗粒示踪的多焦面双螺旋点扩散函数显微研究. 物理学报, doi: 10.7498/aps.73.20240271
    [2] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, doi: 10.7498/aps.72.20230863
    [3] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性. 物理学报, doi: 10.7498/aps.70.20210045
    [4] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, doi: 10.7498/aps.70.20201628
    [5] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, doi: 10.7498/aps.69.20200463
    [6] 陈珊珊, 刘幸, 刘之光, 李家方. 基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用. 物理学报, doi: 10.7498/aps.68.20191494
    [7] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.68.20181665
    [8] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响. 物理学报, doi: 10.7498/aps.68.20181567
    [9] 李丹, 张宝龙, 郭海成. 垂直向列型彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, doi: 10.7498/aps.64.140701
    [10] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, doi: 10.7498/aps.64.058705
    [11] 兰忠, 朱霞, 彭本利, 林勐, 马学虎. 滴状冷凝过程液滴自由表面温度场分析. 物理学报, doi: 10.7498/aps.61.150508
    [12] 陈小军, 张自丽, 葛辉良. 四光束干涉单次曝光构造含平面缺陷三维周期性微纳结构. 物理学报, doi: 10.7498/aps.61.174211
    [13] 张宝龙, 李丹, 戴凤智, 杨世凤, 郭海成. 彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, doi: 10.7498/aps.61.040701
    [14] 程雪苹, 林机, 韩平. 三维非线性Schr?dinger方程的直接微扰方法. 物理学报, doi: 10.7498/aps.59.6752
    [15] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, doi: 10.7498/aps.55.4774
    [16] 唐 鑫, 张 超, 张庆瑜. Cu(111)三维表面岛对表面原子扩散影响的分子动力学研究. 物理学报, doi: 10.7498/aps.54.5797
    [17] 闵敬春. 滴状冷凝中液滴的内外压差及临界半径. 物理学报, doi: 10.7498/aps.51.2730
    [18] 叶笑蓉, 曹佑安, 杨奇斌. 三维晶体学群的极大有限群的代数基础. 物理学报, doi: 10.7498/aps.50.1139
    [19] 解文方. 三维量子点的三电子系统. 物理学报, doi: 10.7498/aps.46.563
    [20] 沈宝华, 李超, 宋沧州, 徐增达. 扩散真空泵冷凝捕集器的液氮自动稳压装置. 物理学报, doi: 10.7498/aps.16.241
计量
  • 文章访问数:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-17

/

返回文章
返回