搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于三维单颗粒示踪的多焦面双螺旋点扩散函数显微研究

马光鹏 龚振权 聂梦娇 曹慧群 屈军乐 林丹樱 于斌

引用本文:
Citation:

用于三维单颗粒示踪的多焦面双螺旋点扩散函数显微研究

马光鹏, 龚振权, 聂梦娇, 曹慧群, 屈军乐, 林丹樱, 于斌

Multifocus double-helix point spread function microscopy for 3D single particle tracking

Ma Guang-Peng, Gong Zhen-Quan, Nie Meng-Jiao, Cao Hui-Qun, Qu Jun-Le, Lin Dan-Ying, Yu Bin
PDF
HTML
导出引用
  • 双螺旋点扩散函数(double-helix point spread function, DH-PSF)显微可实现纳米尺度的三维单颗粒示踪(three-dimensional single particle tracking, 3D SPT), 被广泛应用于生命科学等领域, 但DH-PSF显微的成像景深和定位精度有限, 限制了其在活体厚样品中的应用. 为了解决此问题, 本文提出了一种基于轴向分光棱镜的多焦面DH-PSF 显微(z-splitter prism-based multifocus DH-PSF microscopy, ZPMDM)方法和系统, 通过将基于轴向分光棱镜的多焦面显微与DH-PSF相结合, 在无需扫描的情况下提高DH-PSF显微的轴向定位范围和定位精度, 解决完整活细胞内3D SPT的大景深探测难题. 通过系统标定, ZPMDM中3个通道的平均三维定位精度分别为σL(x, y, z) = (4.4 nm, 4.6 nm, 10.5 nm), σM(x, y, z) = (4.3 nm, 4.2 nm, 8.2 nm), 以及σR(x, y, z) = (4.8 nm, 4.4 nm, 10.3 nm), DH-PSF的有效景深扩展至6 μm, 实现了大景深范围内的甘油-水混合溶液中的荧光微球示踪, 并初步研究了活巨噬细胞的吞噬现象, 进一步验证了该方法的有效性, 对于3D SPT的发展和应用具有重要意义.
    Double-helix point spread function (DH-PSF) microscopy can realize three-dimensional single particle tracking (3D SPT) on a nanoscale, and is widely used in life sciences and other fields. However, its imaging depth-of-field (DOF) and localization accuracy are limited, which hinders its application in thick samples in vivo. To address this issue, this paper proposes a z-splitter prism-based multifocus DH-PSF microscopy (ZPMDM) method and system to improve the DOF and localization accuracy of DH-PSF microscopy without scanning. It solves the problem of large DOF detection of 3D SPT in whole living cells. By means of systematic calibration, the average 3D localization accuracies of three channels of ZPMDM are determined to be σL(x, y, z) = (4.4 nm, 4.6 nm, 10.5 nm), σM(x, y, z) = (4.3 nm, 4.2 nm, 8.2 nm), and σR(x, y, z) = (4.8 nm, 4.4 nm, 10.3 nm). And the effective DOF of the system is extended to 6 μm. Furthermore, the ZPMDM system is used to track fluorescent microspheres in a glycerol-water mixture across a large depth-of-field range. The Brownian motion of the fluorescent microspheres in the mixture solution is also investigated. The experimental results demonstrate that the errors between the experimentally obtained diffusion coefficients and the theoretically calculated diffusion coefficients are all within 10%. The reliability of the ZPMDM system in achieving single-particle 3D tracking imaging is verified in this study. The validity of the method is further verified by preliminarily investigating the phagocytosis phenomenon of live macrophages. It is of significance for the development and application of nanoscale 3D SPT. The ZPMDM system is shown in the attached figure.
      通信作者: 林丹樱, dylin@szu.edu.cn ; 于斌, yubin@szu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFF0712500)、国家自然科学基金(批准号: 62175166, 61975131, 62235007, 62275165, 62127819)、深圳市科技计划项目(批准号: JCYJ20200109105411133, JCYJ20220818100202005)和深圳市光子学和生物光子学重点实验室(批准号: ZDSYS20210623092006020)资助的课题.
      Corresponding author: Lin Dan-Ying, dylin@szu.edu.cn ; Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFF0712500), the National Natural Science Foundation of China (Grant Nos. 62175166, 61975131, 62235007, 62275165, 62127819), the Science and Technology Program of Shenzhen, China (Grant Nos. JCYJ20200109105411133, JCYJ20220818100202005), and the Key Laboratory of Photonics and Biophotonics of Shenzhen, China (Grant No. ZDSYS20210623092006020).
    [1]

    Dupont A, Lamb D C 2011 Nanoscale 3 4532Google Scholar

    [2]

    Kusumi A, Tsunoyama T A, Hirosawa K M, Kasai R S, Fujiwara T K 2014 Nat. Chem. Biol. 10 524Google Scholar

    [3]

    Gal N, Lechtman-Goldstein D, Weihs D 2013 Rheol. Acta 52 425Google Scholar

    [4]

    Cognet L, Leduc C, Lounis B 2014 Curr. Opin. Chem. Biol. 20 78Google Scholar

    [5]

    Kubitscheck U, Kuckmann O, Kues T, Peters R 2000 Biophys. J. 78 2170Google Scholar

    [6]

    Carter B C, Shubeita G T, Gross S P 2005 Phys. Biol. 2 60Google Scholar

    [7]

    Arhel N, Genovesio A, Kim K A, Miko S, Perret E, OlivoMarin J C, Shorte S, Charneau P 2006 Nat. Methods 3 817Google Scholar

    [8]

    Bacher C P, Reichenzeller M, Athale C, Herrmann H, Eils R 2004 BMC. Cell Biol. 5 45Google Scholar

    [9]

    Greengard A, Schechner Y, Piestun R 2006 Opt. Lett. 31 181Google Scholar

    [10]

    Pavani S R P, DeLuca J G, Piestun R. 2009 Opt. Express 17 19644Google Scholar

    [11]

    Thompson M A, Lew M D, Badieirostami M 2010 Nano Lett. 10 211Google Scholar

    [12]

    Thompson M A, Casolari J M, Badieirostami M 2010 PNAS 107 17864Google Scholar

    [13]

    Wang D P, Agrawal A, Piestun R 2017 Appl. Phys. Lett. 110 211107Google Scholar

    [14]

    Gahlmann A, Moerner W E 2014 Nat. Rev. Microbiol. 12 9Google Scholar

    [15]

    Wang D P, Wu H C, Schwartz D K 2017 Phys. Rev. Lett. 119 268001Google Scholar

    [16]

    Wu H C, Sarfati R, Wang D P 2020 J. Am. Chem. Soc. 142 4696Google Scholar

    [17]

    Lasker K, von Diezmann L, Zhou X 2020 Nat. Microbiol. 5 418Google Scholar

    [18]

    Rocha J M, Gahlmann A 2019 Jove-J. Vis. Exp. 151 59387Google Scholar

    [19]

    Li H, Chen D N, Xu G X, Yu B, Niu H B 2015 Opt. Express 23 787Google Scholar

    [20]

    Li H F, Wang F M, Wei T D, Miao X, Cheng Y, Pang X P, Jiang K M, Huang W, Zhang Y H 2021 Opt. Lett. 46 5088Google Scholar

    [21]

    Xiao S, Gritton H, Tseng H A, Zemel D, Han X, Mertz J 2020 Optica 7 1477Google Scholar

    [22]

    霍英东, 曹博, 于斌, 陈丹妮, 牛憨笨 2015 物理学报 64 028701Google Scholar

    Huo Y D, Cao B, Yu B, Chen D N, Niu H B 2015 Acta Phys. Sin. 64 028701Google Scholar

    [23]

    林丹樱, 龚振权, 黄黎琳, 聂梦娇, 于斌, 屈军乐 2024 物理学报 73 068701Google Scholar

    Lin D Y, Gong Z Q, Huang L, Nie M J, Yu B, Qu J L 2024 Acta Phys. Sin. 73 068701Google Scholar

  • 图 1  ZPMDM系统光路示意图. Laser1—Laser2, 激光器; ND, 中性密度衰减片; L1—L6, 透镜; M, 反射镜; TL1—TL3, 管镜; DM1, DM2, 二向色镜; OL, 物镜; BS, 分束棱镜; QD, 四象限探测器; DH-PM, 双螺旋相位模板; z-splitter prism, 轴向分光棱镜; sCMOS, 科研级互补金属氧化物半导体相机

    Fig. 1.  Schematic diagram of the ZPMDM system. Laser1–Laser2, lasers; ND, neutral density attenuator; L1–L6, lens; M, mirror; TL1–TL3, tube lens; DM1, DM2, dichroic mirrors; OL, objective lens; BS, beam splitter; QD, four-quadrant detector; DH-PM, double-helix phase mask; z-splitter prism, axial beam splitter prism; sCMOS, scientific complementary metal oxide semiconductor camera.

    图 2  三通道荧光微球图像配准 (a) 左通道与中间通道荧光微球图像叠加的伪彩图; (b)配准后的左通道与中间通道荧光微球图像叠加的伪彩图; (c) 右通道与中间通道荧光微球图像叠加的伪彩图; (d)配准后的右通道与中间通道荧光微球图像叠加的伪彩图; 伪彩色: 紫色代表中间通道荧光微球图像, 绿色代表左(右)通道荧光微球图像, 两者准确重合时荧光微球图像为灰白色

    Fig. 2.  Three-channel fluorescent microsphere image registration: (a) Pseudo-color image superimposed with fluorescent microsphere images in the left channel and middle channels; (b) pseudo-color image superimposed with fluorescent microsphere images of the left and middle channels after registration; (c) pseudo-color image superimposed with fluorescent microsphere images in the right middle channels; (d) pseudo-color image superimposed with fluorescent microsphere images of the right channel and middle channels after registration; pseudo-color: purple represents fluorescent microsphere image in the middle channel, green represents fluorescent microsphere image in the left (right) channel, and the fluorescent microsphere image is greyish-white when the two accurately overlap.

    图 3  左、中、右三通道的标定 (a) 3个通道的标定曲线; (b) 同一深度下左、中、右3个通道对应的双螺旋成像结果; (c) 左、中、右3个通道的三维定位精度

    Fig. 3.  Calibration of the left, middle and right channels: (a) Calibration curves for the three channels; (b) the corresponding double-helix imaging results of the left, middle and right channels at the same depth; (c) 3D localization accuracy of the left, middle and right channels.

    图 4  20%浓度甘油水溶液中的荧光微球的三维追踪 (a) 200 nm荧光微球在20%甘油水溶液中扩散时的动态变化图像; (b) 对图(a)红框中的荧光微球的运动轨迹进行图像重构所得到的三维追踪轨迹; (c)—(e) 图(b)中荧光微球的运动轨迹分别投射在xy面、yz面、xz面的投影

    Fig. 4.  3D tracking of fluorescent beads in a 20% glycerol aqueous solution: (a) Image of the dynamics of a 200 nm fluorescent bead during diffusion in a 20% glycerol aqueous solution; (b) 3D tracking trajectory obtained by image reconstruction of the motion trajectory of the fluorescent microspheres in the red box in panel (a); (c)–(e) projections of the trajectories of the fluorescent microspheres in panel (b) onto the xy, yz and xz planes.

    图 5  (a) 200 nm荧光微球在20%及60%浓度甘油水溶液中扩散时的均方位移曲线; (b) 20%及60%浓度下甘油水溶液的黏度随温度变化曲线图

    Fig. 5.  (a) Mean square displacement curves for the diffusion of 200 nm fluorescent beads in aqueous glycerol solutions at 20% and 60% concentrations; (b) viscosity versus temperature plots for aqueous glycerol solutions at 20% and 60% concentrations.

    图 6  活细胞中荧光微球的三维示踪 (a) 巨噬细胞Raw-264.7的明场图像; (b) 荧光微球DH-PSF图像; (c) 巨噬细胞中荧光微球的三维运动轨迹

    Fig. 6.  3D tracking of fluorescent beads in live cells: (a) White light image of the Raw-264.7 cell; (b) DH-PSF fluorescence image of a bead; (c) 3D trajectory of the bead in Raw-264.7 cell.

  • [1]

    Dupont A, Lamb D C 2011 Nanoscale 3 4532Google Scholar

    [2]

    Kusumi A, Tsunoyama T A, Hirosawa K M, Kasai R S, Fujiwara T K 2014 Nat. Chem. Biol. 10 524Google Scholar

    [3]

    Gal N, Lechtman-Goldstein D, Weihs D 2013 Rheol. Acta 52 425Google Scholar

    [4]

    Cognet L, Leduc C, Lounis B 2014 Curr. Opin. Chem. Biol. 20 78Google Scholar

    [5]

    Kubitscheck U, Kuckmann O, Kues T, Peters R 2000 Biophys. J. 78 2170Google Scholar

    [6]

    Carter B C, Shubeita G T, Gross S P 2005 Phys. Biol. 2 60Google Scholar

    [7]

    Arhel N, Genovesio A, Kim K A, Miko S, Perret E, OlivoMarin J C, Shorte S, Charneau P 2006 Nat. Methods 3 817Google Scholar

    [8]

    Bacher C P, Reichenzeller M, Athale C, Herrmann H, Eils R 2004 BMC. Cell Biol. 5 45Google Scholar

    [9]

    Greengard A, Schechner Y, Piestun R 2006 Opt. Lett. 31 181Google Scholar

    [10]

    Pavani S R P, DeLuca J G, Piestun R. 2009 Opt. Express 17 19644Google Scholar

    [11]

    Thompson M A, Lew M D, Badieirostami M 2010 Nano Lett. 10 211Google Scholar

    [12]

    Thompson M A, Casolari J M, Badieirostami M 2010 PNAS 107 17864Google Scholar

    [13]

    Wang D P, Agrawal A, Piestun R 2017 Appl. Phys. Lett. 110 211107Google Scholar

    [14]

    Gahlmann A, Moerner W E 2014 Nat. Rev. Microbiol. 12 9Google Scholar

    [15]

    Wang D P, Wu H C, Schwartz D K 2017 Phys. Rev. Lett. 119 268001Google Scholar

    [16]

    Wu H C, Sarfati R, Wang D P 2020 J. Am. Chem. Soc. 142 4696Google Scholar

    [17]

    Lasker K, von Diezmann L, Zhou X 2020 Nat. Microbiol. 5 418Google Scholar

    [18]

    Rocha J M, Gahlmann A 2019 Jove-J. Vis. Exp. 151 59387Google Scholar

    [19]

    Li H, Chen D N, Xu G X, Yu B, Niu H B 2015 Opt. Express 23 787Google Scholar

    [20]

    Li H F, Wang F M, Wei T D, Miao X, Cheng Y, Pang X P, Jiang K M, Huang W, Zhang Y H 2021 Opt. Lett. 46 5088Google Scholar

    [21]

    Xiao S, Gritton H, Tseng H A, Zemel D, Han X, Mertz J 2020 Optica 7 1477Google Scholar

    [22]

    霍英东, 曹博, 于斌, 陈丹妮, 牛憨笨 2015 物理学报 64 028701Google Scholar

    Huo Y D, Cao B, Yu B, Chen D N, Niu H B 2015 Acta Phys. Sin. 64 028701Google Scholar

    [23]

    林丹樱, 龚振权, 黄黎琳, 聂梦娇, 于斌, 屈军乐 2024 物理学报 73 068701Google Scholar

    Lin D Y, Gong Z Q, Huang L, Nie M J, Yu B, Qu J L 2024 Acta Phys. Sin. 73 068701Google Scholar

  • [1] 林丹樱, 武泽凯, 于斌, 黄黎琳, 张潇, 屈军乐. 正交像散高密度三维单分子定位显微的数值模拟. 物理学报, 2022, 71(12): 128701. doi: 10.7498/aps.71.20212091
    [2] 李四维, 林丹樱, 邹小慧, 张炜, 陈丹妮, 于斌, 屈军乐. 基于双螺旋点扩散函数工程的多焦点图像扫描显微. 物理学报, 2021, 70(3): 038701. doi: 10.7498/aps.70.20200640
    [3] 赵忠超, 杨旭锋, 许天旭, 何九如, 弓巧侠, 杜艳丽, 董林, 袁斌, 马凤英. 基于螺旋相位调制的非相干全息点扩散函数研究. 物理学报, 2018, 67(1): 014203. doi: 10.7498/aps.67.20171442
    [4] 李四维, 吴晶晶, 张赛文, 李恒, 陈丹妮, 于斌, 屈军乐. 用于大景深单分子定位显微的多功能全息相位片的设计及数值模拟. 物理学报, 2018, 67(17): 174202. doi: 10.7498/aps.67.20180569
    [5] 胡玉禄, 胡玉禄, 胡权, 胡权, 朱小芳, 朱小芳, 李斌, 李斌, 邱海舰, 邱海舰, 高鸾凤, 高鸾凤. 螺旋线行波管三维返波互作用理论与数值模拟. 物理学报, 2017, 66(2): 028401. doi: 10.7498/aps.66.028401
    [6] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [7] 危波, 蔡理, 杨晓阔, 李成. 基于多铁纳磁体的择多逻辑门三维磁化动态特性研究. 物理学报, 2017, 66(21): 217501. doi: 10.7498/aps.66.217501
    [8] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究. 物理学报, 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [9] 陈鹤, 于斌, 陈丹妮, 李恒, 牛憨笨. 超衍射成像中双螺旋点扩展函数的三维定位精度. 物理学报, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [10] 于斌, 李恒, 陈丹妮, 牛憨笨. 用于大景深三维纳米分辨多分子追踪的衍射光学元件的设计制备和实验研究. 物理学报, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [11] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌. 三维燃烧介质和壁面温度的非接触联合重建研究. 物理学报, 2012, 61(13): 134702. doi: 10.7498/aps.61.134702
    [12] 庞哲, 王爽, 李辉, 徐春华, 李明. 用荧光显微示踪方法研究RecA在DNA同源识别过程中的工作机理. 物理学报, 2012, 61(21): 218701. doi: 10.7498/aps.61.218701
    [13] 王利, 毕思文, 王果果. 利用三平面腔镜共焦腔产生多模压缩光束. 物理学报, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [14] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算. 物理学报, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [15] 胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林. 螺旋线行波管三维多频非线性理论分析和数值模拟. 物理学报, 2009, 58(9): 6665-6670. doi: 10.7498/aps.58.6665
    [16] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [17] 唐志列, 梁瑞生, 常鸿森. 双光子和多光子共焦显微镜的成像理论. 物理学报, 2000, 49(6): 1076-1080. doi: 10.7498/aps.49.1076
    [18] 黄 菁, 梁瑞生, 司徒达, 张坤明, 唐志列. 高斯光束共焦扫描激光显微镜的光学传递函数. 物理学报, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [19] 解文方. 三维量子点的三电子系统. 物理学报, 1997, 46(3): 563-567. doi: 10.7498/aps.46.563
    [20] 滕保华. 三维Ising模型的Green函数方法处理. 物理学报, 1991, 40(5): 826-832. doi: 10.7498/aps.40.826
计量
  • 文章访问数:  539
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-17
  • 修回日期:  2024-03-14
  • 上网日期:  2024-04-03
  • 刊出日期:  2024-05-20

/

返回文章
返回