搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于螺旋相位调制的非相干全息点扩散函数研究

赵忠超 杨旭锋 许天旭 何九如 弓巧侠 杜艳丽 董林 袁斌 马凤英

引用本文:
Citation:

基于螺旋相位调制的非相干全息点扩散函数研究

赵忠超, 杨旭锋, 许天旭, 何九如, 弓巧侠, 杜艳丽, 董林, 袁斌, 马凤英

Point spread function of incoherent digital holography based on spiral phase modulation

Zhao Zhong-Chao, Yang Xu-Feng, Xu Tian-Xu, He Jiu-Ru, Gong Qiao-Xiao, Du Yan-Li, Dong Lin, Yuan Bin, Ma Feng-Ying
PDF
导出引用
  • 分析了菲涅耳非相干相关全息(Fresnel incoherent correlation holography,FINCH)系统中纯相位空间光调制器(spatial light modulator,SLM)加载螺旋相位掩模时的点扩散函数.以氙灯为照明光源搭建了FINCH系统,电荷耦合器记录的点源全息图与点扩散函数模拟结果一致.采用该系统分别在SLM上加载双透镜掩模和螺旋相位调制双透镜掩模两种情况下对分辨率板和非染色洋葱细胞成像,给出了成像对比结果.结果表明:采用螺旋相位调制的FINCH系统可以在几乎不牺牲分辨率的情况下提高图像的边缘对比度;同样,对相位物体也可以实现图像的边缘提取和识别.该方法在实时监测活细胞的分裂、形变等方面具有重要应用前景.
    Fresnel incoherent correlation holography (FINCH) has attracted much attention because it is able to record the holograms of three-dimensional (3D) samples under incoherent illumination with just a charge coupled device (CCD) and spatial light modulator (SLM). The FINCH technology achieves the splitting and phase shifting of the incident beam by loading a phase mask on an SLM. Three holograms, whose phase factors are different from each other, are recorded sequentially by a CCD. After the three holograms are superposed in the computer, the zero order image and a twin image are eliminated, and a complex hologram is obtained. The 3D properties of the object are revealed when the complex hologram is reconstructed in the computer. Spiral phase filters (SPFs) are commonly used to produce optical vortices, which can enhance and recognize image edges. In this paper, the spiral phase modulated FINCH system illuminated by Xenon lamp is built, in which the phase-only SLM is space-division multiplexed by a helical lens (superposed by an SPF and a lens) and a conventional lens. The mathematical model of spiral phase modulated FINCH system is established based on wave optics theory. The specific forms of the point spread function (PSF) and the reconstruction distance of the system are given for the first time. Experiments are conducted by using a small aperture with a diameter of 20 nm as a point source, the point source hologram recorded by CCD and the reconstructed image are consistent with the simulated ones. When the system is used for imaging resolution target and unstained onion cells, the edge contrast enhancement effects are obtained without the loss of resolution. The results show that the spiral phase modulated FINCH system can not only improve the edge contrast of the amplitude object, but also extract the edge information or recognition of the phase objects. This method has an important application prospect in the quantitative imaging of phase objects such as in real-time monitoring cell division and deformation of living cells.
      通信作者: 袁斌, yuanbin@zzu.edu.cn;mafy@zzu.edu.cn ; 马凤英, yuanbin@zzu.edu.cn;mafy@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674290,61505178)、河南省高等学校重点科研项目(批准号:15A140038,16A140035,18A140032)和河南省科技开放合作计划项目(批准号:152106000045)资助的课题.
      Corresponding author: Yuan Bin, yuanbin@zzu.edu.cn;mafy@zzu.edu.cn ; Ma Feng-Ying, yuanbin@zzu.edu.cn;mafy@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674290, 61505178), the Natural Science Foundation of Henan Province of China (Grant Nos. 15A140038, 16A140035, 18A140032), and the Henan Science and Technology Open Cooperation Project, China (Grant No.152106000045).
    [1]

    Gabor D 1948 Nature 161 777

    [2]

    Mertz L, Young N O 1962 Optical Instruments and Techniques London, United Kingdom, July 11-14, 1961 p305

    [3]

    Wan Y, Wang D, Man T 2014 Opt. Express 22 8565

    [4]

    Kim M K 2013 Opt. Express 21 9636

    [5]

    Naik D N, Pedrini G, Osten W 2013 Opt. Express 21 3990

    [6]

    Rosen J, Brooker G 2007 Opt. Express 15 2244

    [7]

    Cochran G 1966 J. Opt. Soc. Am. 56 1513

    [8]

    Stroke G W, Restrick R C 1965 Appl. Phys. Lett. 7 229

    [9]

    Goodman J W, Lawrence R W 1967 Appl. Phys. Lett. 11 77

    [10]

    Huang T S 1971 Proc. IEEE 59 1335

    [11]

    Schnars U, Jptner W P O 2002 Meas. Sci. Technol. 13 R85

    [12]

    Schnars U, Jptner W 1994 Appl. Opt. 33 179

    [13]

    Yang J, Wu X C, Wu Y C, Yao L C, Chen L H, Qiu K Z, Cen K F 2015 Acta Phys. Sin. 64 114209(in Chinese) [阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法 2015 物理学报 64 114209]

    [14]

    Li J C, Peng Z J, Fu Y C 2011 Chin. Phys. Lett. 28 064201

    [15]

    Zhang Q X, L X X, Yu Q T, Liu G Y 2009 Chin. Phys.. 18 2764

    [16]

    Lu X W, Li J Z, Chen H Y 2010 Chin. Phys. Lett. 27 104209

    [17]

    Li J C 2012 Acta Phys. Sin. 61 134203(in Chinese) [李俊昌 2012 物理学报 61 134203]

    [18]

    Kim M K 2012 Opt. Lett. 37 2694

    [19]

    Rosen J, Brooker G 2007 Opt. Lett. 32 912

    [20]

    Rosen J, Brooker G 2008 Nat. Photon. 2 190

    [21]

    Rosen J, Brooker G 2012 Adv. Opt. Techn. 1 151

    [22]

    Shi X, Zhu W F, Yuan B, Du Y L, Gong Q X, Guo M T, Liang E J, Ma F Y 2015 Chin. J. Las. 42 265(in Chinese) [石侠, 朱五凤, 袁斌, 杜艳丽, 弓巧侠, 郭茂田, 梁二军, 马凤英 2015 中国激光 42 265]

    [23]

    Bouchal P, Bouchal Z 2012 Opt. Lett. 37 2949

    [24]

    Li J C, Song Q X, Pascal P, Gui J B, Lou Y L 2014 Chin. J. Las. 41 81(in Chinese) [李俊昌, 宋庆和, Picart Pascal, 桂进斌, 楼宇丽 2014 中国激光 41 81]

  • [1]

    Gabor D 1948 Nature 161 777

    [2]

    Mertz L, Young N O 1962 Optical Instruments and Techniques London, United Kingdom, July 11-14, 1961 p305

    [3]

    Wan Y, Wang D, Man T 2014 Opt. Express 22 8565

    [4]

    Kim M K 2013 Opt. Express 21 9636

    [5]

    Naik D N, Pedrini G, Osten W 2013 Opt. Express 21 3990

    [6]

    Rosen J, Brooker G 2007 Opt. Express 15 2244

    [7]

    Cochran G 1966 J. Opt. Soc. Am. 56 1513

    [8]

    Stroke G W, Restrick R C 1965 Appl. Phys. Lett. 7 229

    [9]

    Goodman J W, Lawrence R W 1967 Appl. Phys. Lett. 11 77

    [10]

    Huang T S 1971 Proc. IEEE 59 1335

    [11]

    Schnars U, Jptner W P O 2002 Meas. Sci. Technol. 13 R85

    [12]

    Schnars U, Jptner W 1994 Appl. Opt. 33 179

    [13]

    Yang J, Wu X C, Wu Y C, Yao L C, Chen L H, Qiu K Z, Cen K F 2015 Acta Phys. Sin. 64 114209(in Chinese) [阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法 2015 物理学报 64 114209]

    [14]

    Li J C, Peng Z J, Fu Y C 2011 Chin. Phys. Lett. 28 064201

    [15]

    Zhang Q X, L X X, Yu Q T, Liu G Y 2009 Chin. Phys.. 18 2764

    [16]

    Lu X W, Li J Z, Chen H Y 2010 Chin. Phys. Lett. 27 104209

    [17]

    Li J C 2012 Acta Phys. Sin. 61 134203(in Chinese) [李俊昌 2012 物理学报 61 134203]

    [18]

    Kim M K 2012 Opt. Lett. 37 2694

    [19]

    Rosen J, Brooker G 2007 Opt. Lett. 32 912

    [20]

    Rosen J, Brooker G 2008 Nat. Photon. 2 190

    [21]

    Rosen J, Brooker G 2012 Adv. Opt. Techn. 1 151

    [22]

    Shi X, Zhu W F, Yuan B, Du Y L, Gong Q X, Guo M T, Liang E J, Ma F Y 2015 Chin. J. Las. 42 265(in Chinese) [石侠, 朱五凤, 袁斌, 杜艳丽, 弓巧侠, 郭茂田, 梁二军, 马凤英 2015 中国激光 42 265]

    [23]

    Bouchal P, Bouchal Z 2012 Opt. Lett. 37 2949

    [24]

    Li J C, Song Q X, Pascal P, Gui J B, Lou Y L 2014 Chin. J. Las. 41 81(in Chinese) [李俊昌, 宋庆和, Picart Pascal, 桂进斌, 楼宇丽 2014 中国激光 41 81]

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, 2025, 74(1): 010301. doi: 10.7498/aps.74.20240933
    [2] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [3] 李四维, 林丹樱, 邹小慧, 张炜, 陈丹妮, 于斌, 屈军乐. 基于双螺旋点扩散函数工程的多焦点图像扫描显微. 物理学报, 2021, 70(3): 038701. doi: 10.7498/aps.70.20200640
    [4] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [5] 徐涵, 陈树新, 吴昊, 陈坤, 洪磊. 基于数字非线性锁相环的相干态相位估计. 物理学报, 2019, 68(2): 024204. doi: 10.7498/aps.68.20181602
    [6] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [7] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [8] 周宏强, 万玉红, 满天龙. 基于位相变更的非相干数字全息自适应成像. 物理学报, 2018, 67(4): 044202. doi: 10.7498/aps.67.20172202
    [9] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [10] 阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法. 数字显微全息重建图像的景深扩展研究. 物理学报, 2015, 64(11): 114209. doi: 10.7498/aps.64.114209
    [11] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [12] 石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍. 像面数字全息的重建相位误差分析和改善. 物理学报, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [13] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建. 物理学报, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [14] 吴涛, 金义富, 侯睿, 杨俊杰. 不确定性边缘表示与提取的认知物理学方法. 物理学报, 2013, 62(6): 064201. doi: 10.7498/aps.62.064201
    [15] 陈鹤, 于斌, 陈丹妮, 李恒, 牛憨笨. 超衍射成像中双螺旋点扩展函数的三维定位精度. 物理学报, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [16] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究. 物理学报, 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [17] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [18] 李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究. 物理学报, 2010, 59(4): 2457-2461. doi: 10.7498/aps.59.2457
    [19] 董建军, 曹磊峰, 陈 铭, 谢常青, 杜华冰. 微聚焦菲涅耳波带板聚焦特性研究. 物理学报, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [20] 王利强, 李永放, 曹冬梅, 毕冬艳, 张崇俊, 成延春. V型原子系统中相干布居俘获的相干相位调制研究 . 物理学报, 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
计量
  • 文章访问数:  7611
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-23
  • 修回日期:  2017-10-12
  • 刊出日期:  2018-01-05

/

返回文章
返回