搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双螺旋点扩散函数工程的多焦点图像扫描显微

李四维 林丹樱 邹小慧 张炜 陈丹妮 于斌 屈军乐

引用本文:
Citation:

基于双螺旋点扩散函数工程的多焦点图像扫描显微

李四维, 林丹樱, 邹小慧, 张炜, 陈丹妮, 于斌, 屈军乐

Mutifocal image scanning microscopy based on double-helix point spread function engineering

Li Si-Wei, Lin Dan-Ying, Zou Xiao-Hui, Zhang Wei, Chen Dan-Ni, Yu Bin, Qu Jun-Le
PDF
HTML
导出引用
  • 在传统共聚焦显微技术的基础上, 图像扫描显微技术使用面阵探测器来代替单点探测器, 结合虚拟数字针孔并利用像素重定位和解卷积图像重构算法将传统宽场显微镜的分辨率提高一倍, 实现了高信噪比的超分辨共焦成像. 但是, 由于采用逐点扫描的方式, 三维成像速度相对较慢, 限制了其在活体样品成像中的应用. 为了进一步提高图像扫描显微术的成像速度, 本文提出了一种基于双螺旋点扩散函数工程的多焦点图像扫描显微成像方法和系统. 在照明光路中, 利用高速数字微镜器件产生周期分布的聚焦点阵对样品进行并行激发和快速二维扫描; 在探测光路中, 利用双螺旋相位片将激发点荧光信号的强度分布转换为双螺旋的形式; 最终, 利用后期数字重聚焦处理, 从单次样品扫描数据中重构出多个样品层的超分辨宽场图像. 在此基础上, 利用搭建的系统分别对纤维状肌动蛋白和海拉细胞线粒体进行成像实验, 证明了该方法的超分辨能力和快速三维成像能力.
    Confocal laser scanning microscopy (CLSM) is a powerful imaging tool providing high resolution and optical sectioning. In its standard optical configuration, a pair of confocal pinholes is used to reject out-of-focus light. The diffraction limited resolution can be broken by reducing the confocal pinhole size. But this comes at the cost of extremely low signal-to-noise ratio (SNR). The limited SNR problem can be solved by image scanning microscopy (ISM), in which the single-point detector of a regular point-scanning confocal microscopy is substituted with an array detector such as CCD or CMOS, thus the two-fold super-resolution imaging can be achieved by pixel reassignment and deconvolution. However, the practical application of ISM is challenging due to its limited image acquisition speed. Here, we present a hybrid microscopy technique, named multifocal refocusing after scanning using helical phase engineering microscopy (MRESCH), which combines the double-helix point spread function (DH-PSF) engineering with multifocal structured illumination to dramatically improve the image acquisition speed. In the illumination path, sparse multifocal illumination patterns are generated by a digital micromirror device for parallel imaging information acquisition. In the detection path, a phase mask is introduced to modulate the conventional PSF to the DH-PSF, which provides volumetric information, and meanwhile, we also present a digital refocusing strategy for processing the collected raw data to recover the wild-filed image from different sample layers. To demonstrate imaging capabilities of MRESCH, we acquire the images of mitochondria in live HeLa cells and make a detailed comparison with those from the wide-field microscopy. In contrast to the conventional wide-field approach, the MRESCH can expand the imaging depth in a range from –1 μm to 1 μm. Next, we sample the F-actin of bovine pulmonary artery endothelial cells to characterize the lateral resolution of the MRESCH. The results show that the MRESCH has a better resolution capability than the conventional wide-field illumination microscopy. Finally, the proposed image scanning microscopy can record three-dimensional specimen information from a single multi-spot two-dimensional scan, which ensures faster data acquisition and larger field of view than ISM.
      通信作者: 于斌, yubin@szu.edu.cn ; 屈军乐, jlqu@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61975131, 61775144, 61835009, 11774242)、广东省自然科学基金(批准号: 2018A030313362)、广东省基础与应用基础研究基金(批准号: 2019A1515110412)、深圳市基础研究项目(批准号: JCYJ20170818141701667, JCYJ20170818144012025, JCYJ20170412105003520, JCYJ20170818142804605)和广东省科学院发展专项资金(批准号: 2018GDASCX-0804, 2020GDASYL-20200103144)资助的课题
      Corresponding author: Yu Bin, yubin@szu.edu.cn ; Qu Jun-Le, jlqu@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 61775144, 61835009, 11774242), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030313362), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2019A1515110412), the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20170818141701667, JCYJ20170818144012025, JCYJ20170412105003520, JCYJ20170818142804605), and the Science and Technology Development Foundation of Guangdong Academy of Sciences, China (Grant Nos. 2018GDASCX-0804, 2020GDASYL-20200103144)
    [1]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy (USA: Springer) p16

    [2]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [3]

    Yan J, Zhang Q L, Lin D Q, Yao S J 2016 Curr. Biochem. Eng. 3 56Google Scholar

    [4]

    Sheppard C J R 1988 Optik 80 53

    [5]

    Müller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [6]

    Ward E N, Pal R 2017 J. Microsc. 266 221Google Scholar

    [7]

    Sheppard C J R, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889Google Scholar

    [8]

    Castello M, Sheppard C J R, Diaspro A, Vicidomini G 2015 Opt. Lett. 40 5355Google Scholar

    [9]

    Jesacher A, Ritschmarte M, Piestun R 2015 Optica 2 210Google Scholar

    [10]

    Roider C, Heintzmann R, Piestun R 2016 Opt. Express 24 15456Google Scholar

    [11]

    Roider C, Piestun R, Jesacher A 2017 Optica 4 1373Google Scholar

    [12]

    Wang Z J, Cai Y N, Liang Y S, Zhou X, Yan S H, Dan D, Bianco P R, Lei M, Yao B L 2017 Biomed. Opt. Express 8 5493Google Scholar

    [13]

    Li S W, Wu J J, Li H, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 23585Google Scholar

    [14]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [15]

    Pavani S R P, Greengard A, Piestun R 2009 Appl. Phys. Lett. 95 021103Google Scholar

    [16]

    Grover G, Pavani S R P, Piestun R 2010 Opt. Lett. 35 3306Google Scholar

    [17]

    Grover G, Quirin S, Fiedler C, Piestun R 2011 Biomed. Opt. Express 2 3010Google Scholar

    [18]

    于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206Google Scholar

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206Google Scholar

    [19]

    Pavani S R P, Piestun R 2008 Opt. Express 16 3484Google Scholar

    [20]

    Grover G, DeLuca K, Quirin S 2012 Opt. Express 20 26681Google Scholar

    [21]

    Roider C, Jesacher A, Bernet S 2014 Opt. Express 22 4029Google Scholar

    [22]

    李恒, 于斌, 陈丹妮, 牛憨笨 2013 物理学报 62 144201Google Scholar

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 144201Google Scholar

  • 图 1  (a) MRESCH的光路; (b) DH-PSF在不同轴向位置的强度分布; (c) DH-PSF旋转角度与对应轴向位置的关系曲线

    Fig. 1.  (a) Optical configuration of MRESCH; (b) intensity distribution of the DH-PSF at different positions along z-axis; (c) relationship between the two lobe rotation angles of the DH-PSF and position of z-axis.

    图 2  (a) DMD上载入的投影模式; (b) 激发罗丹明染料样品探测到的荧光点阵分布; (c) 存在相位片的条件下, 激发罗丹明染料样品探测到的双螺旋荧光点阵分布

    Fig. 2.  (a) Project pattern of DMD; (b) the fluorescence image of the excitation foci in a uniform solution of Rhodamine 6G at the sample plane; (c) the fluorescence image of the excitation foci in a uniform solution of Rhodamine 6G at the sample plane with DH phase mask.

    图 3  MRESCH的成像原理(FT, 傅里叶变换)

    Fig. 3.  Imaging principle of MRESCH (FT, Fourier transform).

    图 4  (a) MRESCH的原始图像数据; (b) 附上数字针孔后的双螺旋点; (c) MRESCH的图像重构过程

    Fig. 4.  (a) Raw images of MRESCH; (b) the pinholed DH-PSF; (c) principle of MRESCH wide-field image reconstruction.

    图 5  宽场照明和MRESCH对纤维状肌动蛋白的成像结果比较 (a) 纤维状肌动蛋白的宽场照明成像结果; (b) MRESCH的成像结果; (c) 图(a)和图(b)中白色方块区域的放大; (d)图(a)和图(b)中划线位置的横切面强度图(半高宽分别为: 宽场(WF)照明图像374 nm、MRESCH图像 277 nm)

    Fig. 5.  Comparison of F-actin imaging results with wide-field illumination and MRESCH: (a) Wide-field image of F-actin; (b) MRESCH image of F-actin; (c) magnification of white box region in panels (a) and (b); (d) plots of intensity along the colored lines in panels (a) and (b); the FWHM values are 374 nm and 277 nm for wide-field (WF) and MRESCH, respectively.

    图 6  宽场照明和MRESCH对海拉细胞线粒体成像结果比较 (a) 线粒体在z = –1000 nm位置的宽场成像结果; (b) 线粒体在z = 0 nm位置的宽场成像结果; (c) 线粒体在z = 1000 nm位置的宽场成像结果; (d) 线粒体在z = –1000 nm位置的MRESCH成像结果; (e) 线粒体在z = 0 nm位置的MRESCH成像结果; (f) 线粒体在z = 1000 nm位置的MRESCH成像结果

    Fig. 6.  Comparison of mitochondrial imaging results of HeLa cells with wide-field illumination and MRESCH: (a) Wide-field image of mitochondria at z = –1000 nm; (b) wide-field image of mitochondrion at z = 0 nm; (c) wide-field image of mitochondria at z = 1000 nm; (d) image obtained via MRESCH at z = –1000 nm; (e) image obtained via MRESCH at z = 0 nm; (f) image obtained via MRESCH at z = 1000 nm.

  • [1]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy (USA: Springer) p16

    [2]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [3]

    Yan J, Zhang Q L, Lin D Q, Yao S J 2016 Curr. Biochem. Eng. 3 56Google Scholar

    [4]

    Sheppard C J R 1988 Optik 80 53

    [5]

    Müller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [6]

    Ward E N, Pal R 2017 J. Microsc. 266 221Google Scholar

    [7]

    Sheppard C J R, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889Google Scholar

    [8]

    Castello M, Sheppard C J R, Diaspro A, Vicidomini G 2015 Opt. Lett. 40 5355Google Scholar

    [9]

    Jesacher A, Ritschmarte M, Piestun R 2015 Optica 2 210Google Scholar

    [10]

    Roider C, Heintzmann R, Piestun R 2016 Opt. Express 24 15456Google Scholar

    [11]

    Roider C, Piestun R, Jesacher A 2017 Optica 4 1373Google Scholar

    [12]

    Wang Z J, Cai Y N, Liang Y S, Zhou X, Yan S H, Dan D, Bianco P R, Lei M, Yao B L 2017 Biomed. Opt. Express 8 5493Google Scholar

    [13]

    Li S W, Wu J J, Li H, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 23585Google Scholar

    [14]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [15]

    Pavani S R P, Greengard A, Piestun R 2009 Appl. Phys. Lett. 95 021103Google Scholar

    [16]

    Grover G, Pavani S R P, Piestun R 2010 Opt. Lett. 35 3306Google Scholar

    [17]

    Grover G, Quirin S, Fiedler C, Piestun R 2011 Biomed. Opt. Express 2 3010Google Scholar

    [18]

    于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206Google Scholar

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206Google Scholar

    [19]

    Pavani S R P, Piestun R 2008 Opt. Express 16 3484Google Scholar

    [20]

    Grover G, DeLuca K, Quirin S 2012 Opt. Express 20 26681Google Scholar

    [21]

    Roider C, Jesacher A, Bernet S 2014 Opt. Express 22 4029Google Scholar

    [22]

    李恒, 于斌, 陈丹妮, 牛憨笨 2013 物理学报 62 144201Google Scholar

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 144201Google Scholar

  • [1] 马光鹏, 龚振权, 聂梦娇, 曹慧群, 屈军乐, 林丹樱, 于斌. 用于三维单颗粒示踪的多焦面双螺旋点扩散函数显微研究. 物理学报, 2024, 73(10): 108701. doi: 10.7498/aps.73.20240271
    [2] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展. 物理学报, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [3] 潘彬雄, 弓晟, 张鹏, 刘子叶, 皮彭健, 陈旺, 黄文强, 王保举, 詹求强. 基于点扫描的高时空分辨荧光显微成像技术进展. 物理学报, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [4] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [7] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐. 基于数字微镜器件的数字线扫描荧光显微成像技术. 物理学报, 2020, 69(23): 238701. doi: 10.7498/aps.69.20200908
    [8] 李四维, 吴晶晶, 张赛文, 李恒, 陈丹妮, 于斌, 屈军乐. 用于大景深单分子定位显微的多功能全息相位片的设计及数值模拟. 物理学报, 2018, 67(17): 174202. doi: 10.7498/aps.67.20180569
    [9] 安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏. 光学微操纵过程的轴平面显微成像技术. 物理学报, 2017, 66(1): 010702. doi: 10.7498/aps.66.010702
    [10] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展. 物理学报, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [11] 王华光, 张泽新. 摄像显微技术在实验软物质物理中的应用. 物理学报, 2016, 65(17): 178705. doi: 10.7498/aps.65.178705
    [12] 邱骏鹏, 梁闰富, 彭晓, 李亚晖, 刘立新, 尹君, 屈军乐, 牛憨笨. 多色双光子激发荧光显微技术实验研究. 物理学报, 2015, 64(4): 048701. doi: 10.7498/aps.64.048701
    [13] 陈鹤, 于斌, 陈丹妮, 李恒, 牛憨笨. 超衍射成像中双螺旋点扩展函数的三维定位精度. 物理学报, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [14] 于斌, 李恒, 陈丹妮, 牛憨笨. 用于大景深三维纳米分辨多分子追踪的衍射光学元件的设计制备和实验研究. 物理学报, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [15] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] 杨玉平, 施宇蕾, 严 伟, 徐新龙, 马士华, 汪 力. 一种新型THz显微探测技术. 物理学报, 2005, 54(9): 4079-4083. doi: 10.7498/aps.54.4079
    [17] 李群祥, 杨金龙, 袁岚峰, 侯建国, 朱清时. 钒氧酞菁(VOPc)与钒酞菁(VPc)分子的扫描隧道显微镜图像模拟. 物理学报, 2002, 51(3): 609-615. doi: 10.7498/aps.51.609
    [18] 黄 菁, 梁瑞生, 司徒达, 张坤明, 唐志列. 高斯光束共焦扫描激光显微镜的光学传递函数. 物理学报, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [19] 贾金锋, 盖峥, 杨威生, K.INOUE, Y.HASEGAWA, T.SAKURAI. 用扫描隧道显微镜测量局域功函数. 物理学报, 1997, 46(8): 1552-1558. doi: 10.7498/aps.46.1552
    [20] 于洪滨, 高波, 盖峥, 杨威生. 电场下用扫描隧道显微镜对针尖原子扩散的观察. 物理学报, 1997, 46(4): 679-687. doi: 10.7498/aps.46.679
计量
  • 文章访问数:  5950
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-09-04
  • 上网日期:  2021-01-16
  • 刊出日期:  2021-02-05

/

返回文章
返回