搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于点扫描的超分辨显微成像进展

赵光远 郑程 方月 匡翠方 刘旭

引用本文:
Citation:

基于点扫描的超分辨显微成像进展

赵光远, 郑程, 方月, 匡翠方, 刘旭

Progress of point-wise scanning superresolution methods

Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu
PDF
导出引用
  • 光学显微镜一直推动着现代科学技术的发展.随着科学的进步,对显微成像分辨率的要求在生物、材料等领域日渐凸显,而常规宽场显微成像一直面临着成像分辨率衍射受限的问题.1968年出现的共聚焦显微镜作为点扫描显微镜的开端第一次实现了远场下成像分辨率的突破,它具有层切性好、信噪比高等优点.在1994年出现的受激辐射荧光损耗显微镜将显微成像能力突破到2.8 nm左右,并成为目前效果最佳、应用较广泛的超分辨显微技术.荧光差分显微和饱和荧光吸收竞争等点扫描技术具有无荧光染剂限制、饱和光强低、光路简单等优势,并且能取得1/6波长的分辨能力,进而在超分辨显微领域仍有着发挥空间.Airyscan技术作为以上方法的补充可以弥补点扫描系统中由于探测小孔半径减小而带来的信号丢失,从而提高成像信噪比和分辨率,但阵列探测器成本较高.上述点扫描显微镜通过改变照明或者探测的方式实现了分辨率突破.本文详细讨论了点扫描超分辨方法的原理、成像效果及面临的瓶颈,并分析了点扫描超分辨显微镜在应用和技术上的趋势.
    Optical microscope has been giving impetus to the development of modern technology. As the advancement of these techniques, high resolution microscopy becomes crucial in biological and material researches. However, the diffraction limit restricts the resolution of conventional microscopy. In 1968, confocal microscopy, the first pointwise scanning superresolution method, appeared. It improves the imaging resolution, enhances the contrast, and thus breaks through the diffraction limit. Since then many superresolution methods have come into being, among which the pointwise scanning superresolution method earns reputation for its high imaging resolution and contrast. The stimulated emission depletion microscopy becomes the most prominent method with an achievable resolution of about 2.4 nm and then widely used. Besides, the newly developed fluorescence emission difference microscopy (FED) and the saturated absorption competition microscopy (SAC) have their advantages of non-constraint on fluorescent dyes, low saturated beam power, simplified optical setups, while they achieve a resolution of lower than /6. Further explorations of FED will be keen on vivo biological observations by using it, while that of SAC can concentrate on enhancing the resolution on a nanoscale and reducing the signal-to-noise ratio. In addition, the Airyscan technique in which a detector array is used for image acquisition, can serve as a complementary tool to further enhance the imaging quality of pointwise scanning superresolution method. The detector-array enables both the narrowed size of pinhole and the increasing of the acquired signal intensity by 1.84 folds. The other methods, e.g. superoscillation lens and high-index resolution enhancement by scattering, have the potentialities to obtain superresolved image in material science or deep tissues. After being developed in the past three decades, the superresolution methods now encounter a new bottleneck. Further improvement of the current methods is aimed at imaging depth, and being used more practically and diversely. In this review, we detailedly describe the above pointwise scanning superresolution methods, and explain their principles and techniques. In addition, the deficiencies and potentialities of these methods are presented in this review. Finally, we compare the existing methods and envision the next generation of the pointwise scanning superresolution methods.
      通信作者: 匡翠方, cfkuang@zju.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB352003)、国家重点研发计划(批准号:2016YFF0101400)、国家自然科学基金(批准号:61335003,61377013,61378051,61427818)、浙江省自然科学基金(批准号:LR16F050001)和中央高校基本科研业务费资助的课题.
      Corresponding author: Kuang Cui-Fang, cfkuang@zju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB352003), the National Key Research and Development Program of China(Grant No. 2016YFF0101400), the National Natural Science Foundation of China (Grant Nos. 61335003, 61377013, 61378051, 61427818), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR16F050001), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Abbe E 1873 Archiv fr Mikroskopische Anatomie 9 413

    [2]

    Stephenson J W 1877 Monthly Microsc. J. 17 82

    [3]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [4]

    Houston W V 1927 Phys. Rev. 29 478

    [5]

    Kirz J, Jacobsen C, Howells M 1995 Q. Rev. Biophys. 28 33

    [6]

    Petrň M, Hadravsky M, Egger M D, Galambos R 1968 J. Opt. Soc. Am. A 58 661

    [7]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [8]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [9]

    Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [10]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [11]

    Douglass K M, Sieben C, Archetti A, Lambert A, Manley S 2016 Nat. Photon. 10 705

    [12]

    Shechtman Y, Weiss L E A, Backer S, Lee M Y, Moerner W E 2016 Nat. Photon. 10 590

    [13]

    Gustafsson M G 2000 J. Microsc. 198 82

    [14]

    Heintzmann R, Cremer C G 1999 Proceedings of SPIE-The International Society for Optical Engineering 3568 1399

    [15]

    Mudry E, Belkebir K, Girard J, Savatier J, Moal E L, Nicoletti C, Allain M, Sentenac A 2012 Nat. Photon. 6 312

    [16]

    Heintzmann R, Gustafsson M G L 2009 Nat. Photon. 3 362

    [17]

    Webb R H 1996 Rep. Prog. Phys. 59 427

    [18]

    Sheppard C J, Wilson T 1981 J. Microsc. 124 107

    [19]

    Wilson T 2011 J. Microsc. 154 143

    [20]

    Ellinger P 2008 Biol. Rev. 15 323

    [21]

    Brakenhoff G J, Ht V D V, Spronsen E A, Nanninga N 1989 J. Microsc. 153 151

    [22]

    Brakenhoff G J, Blom P, Barends P 1979 J. Microsc. 117 219

    [23]

    Borlinghaus R T, Kappel C 2016 Nat. Methods 13

    [24]

    Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, Ge J, Li H, Liu X 2013 Sci. Rep. 3 1441

    [25]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [26]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [27]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [28]

    Xie H, Liu Y, Jin D, Santangelo P J, Xi P 2013 J. Opt. Soc. Am. A 30 1640

    [29]

    Hao X, Kuang C, Wang T, X Liu 2010 J. Opt. 12 115707

    [30]

    Hao X, Kuang C, Li Y, Liu X 2012 J. Optics 14 045702

    [31]

    Zhang C, Li H, Wang S, Zhao W, Feng X, Wang K, Wang G, Bai J 2016 J. Laser Micro Nanoen. 11 290

    [32]

    Zhu B, Shen S, Zheng Y, Gong W, Si K 2016 Opt. Express 24 19138

    [33]

    Hao X, Kuang C, Gu Z, Li S 2012 Commun. Photon. Conference 1 3

    [34]

    Hell S W, Kroug M 1995 Appl. Phys. B 60 495

    [35]

    Keller J 2006 Ph. D. Dissertation (Heidelberg: Heidelberg University)

    [36]

    Wildanger D, Patton B R, Schill H, Marseglia L, Hadden J P, Knauer S, Schnle A, Rarity J G, O'Brien J L, Hell S W 2011 Adv. Mater. 24 OP309

    [37]

    Gigan S 2017 Nat. Photon. 11 14

    [38]

    Zhang P, Goodwin P M, Werner J H 2014 Opt. Express 22 12398

    [39]

    Yu W, Ji Z, Dong D, Yang X, Xiao Y, Gong Q, Xi P, Shi K 2015 Laser Photon. Rev. 10 147

    [40]

    Patton B R, Burke D, Owald D T J, Bewersdorf Gould J, Booth M J 2016 Opt. Express 24 8862

    [41]

    Wang Y, Hao X, Liu X 2013 Opt. Engineer. 52 093107

    [42]

    Wildanger D, Rittweger E, Kastrup L, Hell S W 2008 Opt. Express 16 9614

    [43]

    Winter F R, Loidolt M, Westphal V, Butkevich A N, Gregor C, Sahl S J, Hell S W 2017 Sci. Rep. 7 46492

    [44]

    Reuss M, Engelhardt J, Hell S W 2010 Opt. Express 18 1049

    [45]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [46]

    Yang B, Przybilla F, Mestre M, Trebbia J B, Lounis B 2014 Opt. Express 22 5581

    [47]

    Chmyrov A, Leutenegger M, Grotjohann T, Schnle A, Kellerfindeisen J, Kastrup L, Jakobs S, Donnert G, Sahl S J, Hell S W 2017 Sci. Rep. 7 44619

    [48]

    Bergermann F, Alber L, Sahl S J, Engelhardt J, Hell S W 2015 Opt. Express 23 211

    [49]

    Hanne J, Falk H J, Grlitz F, Hoyer P, Engelhardt J, Sahl S J, Hell S W 2015 Nat. Commun. 6 7127

    [50]

    Gao P, Prunsche B, Zhou L, Nienhaus K, Nienhaus G U 2017 Nat. Photon. 11 163

    [51]

    Bordenave M D, Balzarottt F, Stefani F D, Hell S W 2016 J. Phys. D: Appl. Phys. 49 365102

    [52]

    Liu Y, Lu Y, Yang X, Zheng X, Wen S, Fan W, Vidal X, Zhao J, Liu D, Zhou Z 2017 Nature 543 229

    [53]

    Yang X, Xie H, Alonas E, Liu Y, Chen X, Santangelo P J, Ren Q, Xi P, Jin D 2016 Light-Sci. Appl. 5 e16134

    [54]

    Danzl J G, Sidenstein S C, Gregor C, Urban N T, Ilgen P, Jakobs S, Hell S W 2016 Nat. Photon. 10 122

    [55]

    Gttfert F, Pleiner T, Heine J, Westphal V, Grlich D, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. USA 114 2125

    [56]

    Zhao G, Kabir M M, Toussaint K C, Kuang C, Zheng C, Yu Z, Liu X 2017 Optica 4 633

    [57]

    Vesel P, Lcers H, Riehle M, Bereiterhahn J 1994 Cell Motility the Cytoskeleton 29 231

    [58]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73

    [59]

    Wilson T, Hamilton D K 1984 J. Mod. Opt. 31 453

    [60]

    Heintzmann R, Sarafis V, Munroe P, Nailon J, Hanley Q S, Jovin T M 2013 Micron 34 293

    [61]

    Dehez H, Pich M, De K Y 2013 Opt. Express 21 15912

    [62]

    Wang D, Liu S, Chen Y, Song J, Liu W, Xiong M, Wang G, Peng X, Qu J 2016 Opt. Express 25 10276

    [63]

    You S, Kuang C, Rong Z, Liu X 2014 Opt. Express 22 26375

    [64]

    Wang N, Kobayashi T 2014 Opt. Express 22 28819

    [65]

    Wang N, Kobayashi T 2015 Opt. Express 23 13704

    [66]

    Rong Z, Kuang C, Fang Y, Zhao G, Xu Y, Liu X 2015 Opt. Commun. 354 71

    [67]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 3118

    [68]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 4529

    [69]

    Zhao G, Kuang C, Ding Z, Liu X 2016 Opt Express 24 23596

    [70]

    Korobchevskaya K, Peres C, Li Z, Antipov A, Sheppard C J, Diaspro A, Bianchini P 2016 Sci. Rep. 6 25816

    [71]

    Zhao G, Rong Z, Zheng C, Liu X, Kuang C 2016 J. Innov. Opt. Heal. Sci. 9 1793

    [72]

    Sheppard C J 1988 Optik 80 53

    [73]

    Sheppard C J, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889

    [74]

    Huff J 2015 Nat. Methods 12

    [75]

    Mller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101

    [76]

    Roth S, Sheppard C J, Kai W, Heintzmann R 2013 Opt. Nanoscopy 2 1

    [77]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749

    [78]

    de Luca G M, Breedijk R M, Brandt R A, Zeelenberg C H, de Jong B E, Timmermans W, Azar L N, Hoebe R A, Stallinga S, Manders E M 2013 Biomed. Opt. Express 4 2644

    [79]

    Sheppard C J, Roth S, Heintzmann R, Castello M, Vicidomini G, Chen R, Chen X, Diaspro A 2016 Opt. Express 24 27280

    [80]

    Kuang C, Ma Y, Zhou R, Zheng G, Fang Y, Xu Y, Liu X, So P T 2016 Phys. Rev. Lett. 117 028102

    [81]

    Ge B, Wang Y, Huang Y, Kuang C, Fang Y, Xiu P, Rong Z, Liu X 2016 Opt. Lett. 41 2013

    [82]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Grohans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. USA 110 21000

    [83]

    Wang P, Slipchenko M N, Mitchell J, Yang C, Potma E O, Xu X, Cheng J X 2013 Nat. Photon. 7 449

    [84]

    Jin N, Rahmat-Samii Y 2007 IEEE Trans. Antenn. Propag. 55 556

    [85]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [86]

    van Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [87]

    Park J H, Park C, Yu H S, Park J, Han S, Shin J, Ko S H, Nam K T, Cho Y H, Park Y K 2013 Nat. Photon. 7 454

    [88]

    Fang Z, Zhu X 2013 Adv. Mater. 25 253840

    [89]

    Zhang W, Fang Z, Zhu X 2016 Chem. Rev. 117 5095

    [90]

    Diekmann R, Helle O I, Oie C I, McCourt P, Huser T R, Schttpelz M, Ahluwalia B S 2017 Nat. Photon. 11 322

    [91]

    Roider C, Ritsch-Marte M, Jesacher A 2016 Opt. Lett. 41 3825

  • [1]

    Abbe E 1873 Archiv fr Mikroskopische Anatomie 9 413

    [2]

    Stephenson J W 1877 Monthly Microsc. J. 17 82

    [3]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [4]

    Houston W V 1927 Phys. Rev. 29 478

    [5]

    Kirz J, Jacobsen C, Howells M 1995 Q. Rev. Biophys. 28 33

    [6]

    Petrň M, Hadravsky M, Egger M D, Galambos R 1968 J. Opt. Soc. Am. A 58 661

    [7]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [8]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [9]

    Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [10]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [11]

    Douglass K M, Sieben C, Archetti A, Lambert A, Manley S 2016 Nat. Photon. 10 705

    [12]

    Shechtman Y, Weiss L E A, Backer S, Lee M Y, Moerner W E 2016 Nat. Photon. 10 590

    [13]

    Gustafsson M G 2000 J. Microsc. 198 82

    [14]

    Heintzmann R, Cremer C G 1999 Proceedings of SPIE-The International Society for Optical Engineering 3568 1399

    [15]

    Mudry E, Belkebir K, Girard J, Savatier J, Moal E L, Nicoletti C, Allain M, Sentenac A 2012 Nat. Photon. 6 312

    [16]

    Heintzmann R, Gustafsson M G L 2009 Nat. Photon. 3 362

    [17]

    Webb R H 1996 Rep. Prog. Phys. 59 427

    [18]

    Sheppard C J, Wilson T 1981 J. Microsc. 124 107

    [19]

    Wilson T 2011 J. Microsc. 154 143

    [20]

    Ellinger P 2008 Biol. Rev. 15 323

    [21]

    Brakenhoff G J, Ht V D V, Spronsen E A, Nanninga N 1989 J. Microsc. 153 151

    [22]

    Brakenhoff G J, Blom P, Barends P 1979 J. Microsc. 117 219

    [23]

    Borlinghaus R T, Kappel C 2016 Nat. Methods 13

    [24]

    Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, Ge J, Li H, Liu X 2013 Sci. Rep. 3 1441

    [25]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [26]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [27]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [28]

    Xie H, Liu Y, Jin D, Santangelo P J, Xi P 2013 J. Opt. Soc. Am. A 30 1640

    [29]

    Hao X, Kuang C, Wang T, X Liu 2010 J. Opt. 12 115707

    [30]

    Hao X, Kuang C, Li Y, Liu X 2012 J. Optics 14 045702

    [31]

    Zhang C, Li H, Wang S, Zhao W, Feng X, Wang K, Wang G, Bai J 2016 J. Laser Micro Nanoen. 11 290

    [32]

    Zhu B, Shen S, Zheng Y, Gong W, Si K 2016 Opt. Express 24 19138

    [33]

    Hao X, Kuang C, Gu Z, Li S 2012 Commun. Photon. Conference 1 3

    [34]

    Hell S W, Kroug M 1995 Appl. Phys. B 60 495

    [35]

    Keller J 2006 Ph. D. Dissertation (Heidelberg: Heidelberg University)

    [36]

    Wildanger D, Patton B R, Schill H, Marseglia L, Hadden J P, Knauer S, Schnle A, Rarity J G, O'Brien J L, Hell S W 2011 Adv. Mater. 24 OP309

    [37]

    Gigan S 2017 Nat. Photon. 11 14

    [38]

    Zhang P, Goodwin P M, Werner J H 2014 Opt. Express 22 12398

    [39]

    Yu W, Ji Z, Dong D, Yang X, Xiao Y, Gong Q, Xi P, Shi K 2015 Laser Photon. Rev. 10 147

    [40]

    Patton B R, Burke D, Owald D T J, Bewersdorf Gould J, Booth M J 2016 Opt. Express 24 8862

    [41]

    Wang Y, Hao X, Liu X 2013 Opt. Engineer. 52 093107

    [42]

    Wildanger D, Rittweger E, Kastrup L, Hell S W 2008 Opt. Express 16 9614

    [43]

    Winter F R, Loidolt M, Westphal V, Butkevich A N, Gregor C, Sahl S J, Hell S W 2017 Sci. Rep. 7 46492

    [44]

    Reuss M, Engelhardt J, Hell S W 2010 Opt. Express 18 1049

    [45]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [46]

    Yang B, Przybilla F, Mestre M, Trebbia J B, Lounis B 2014 Opt. Express 22 5581

    [47]

    Chmyrov A, Leutenegger M, Grotjohann T, Schnle A, Kellerfindeisen J, Kastrup L, Jakobs S, Donnert G, Sahl S J, Hell S W 2017 Sci. Rep. 7 44619

    [48]

    Bergermann F, Alber L, Sahl S J, Engelhardt J, Hell S W 2015 Opt. Express 23 211

    [49]

    Hanne J, Falk H J, Grlitz F, Hoyer P, Engelhardt J, Sahl S J, Hell S W 2015 Nat. Commun. 6 7127

    [50]

    Gao P, Prunsche B, Zhou L, Nienhaus K, Nienhaus G U 2017 Nat. Photon. 11 163

    [51]

    Bordenave M D, Balzarottt F, Stefani F D, Hell S W 2016 J. Phys. D: Appl. Phys. 49 365102

    [52]

    Liu Y, Lu Y, Yang X, Zheng X, Wen S, Fan W, Vidal X, Zhao J, Liu D, Zhou Z 2017 Nature 543 229

    [53]

    Yang X, Xie H, Alonas E, Liu Y, Chen X, Santangelo P J, Ren Q, Xi P, Jin D 2016 Light-Sci. Appl. 5 e16134

    [54]

    Danzl J G, Sidenstein S C, Gregor C, Urban N T, Ilgen P, Jakobs S, Hell S W 2016 Nat. Photon. 10 122

    [55]

    Gttfert F, Pleiner T, Heine J, Westphal V, Grlich D, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. USA 114 2125

    [56]

    Zhao G, Kabir M M, Toussaint K C, Kuang C, Zheng C, Yu Z, Liu X 2017 Optica 4 633

    [57]

    Vesel P, Lcers H, Riehle M, Bereiterhahn J 1994 Cell Motility the Cytoskeleton 29 231

    [58]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73

    [59]

    Wilson T, Hamilton D K 1984 J. Mod. Opt. 31 453

    [60]

    Heintzmann R, Sarafis V, Munroe P, Nailon J, Hanley Q S, Jovin T M 2013 Micron 34 293

    [61]

    Dehez H, Pich M, De K Y 2013 Opt. Express 21 15912

    [62]

    Wang D, Liu S, Chen Y, Song J, Liu W, Xiong M, Wang G, Peng X, Qu J 2016 Opt. Express 25 10276

    [63]

    You S, Kuang C, Rong Z, Liu X 2014 Opt. Express 22 26375

    [64]

    Wang N, Kobayashi T 2014 Opt. Express 22 28819

    [65]

    Wang N, Kobayashi T 2015 Opt. Express 23 13704

    [66]

    Rong Z, Kuang C, Fang Y, Zhao G, Xu Y, Liu X 2015 Opt. Commun. 354 71

    [67]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 3118

    [68]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 4529

    [69]

    Zhao G, Kuang C, Ding Z, Liu X 2016 Opt Express 24 23596

    [70]

    Korobchevskaya K, Peres C, Li Z, Antipov A, Sheppard C J, Diaspro A, Bianchini P 2016 Sci. Rep. 6 25816

    [71]

    Zhao G, Rong Z, Zheng C, Liu X, Kuang C 2016 J. Innov. Opt. Heal. Sci. 9 1793

    [72]

    Sheppard C J 1988 Optik 80 53

    [73]

    Sheppard C J, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889

    [74]

    Huff J 2015 Nat. Methods 12

    [75]

    Mller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101

    [76]

    Roth S, Sheppard C J, Kai W, Heintzmann R 2013 Opt. Nanoscopy 2 1

    [77]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749

    [78]

    de Luca G M, Breedijk R M, Brandt R A, Zeelenberg C H, de Jong B E, Timmermans W, Azar L N, Hoebe R A, Stallinga S, Manders E M 2013 Biomed. Opt. Express 4 2644

    [79]

    Sheppard C J, Roth S, Heintzmann R, Castello M, Vicidomini G, Chen R, Chen X, Diaspro A 2016 Opt. Express 24 27280

    [80]

    Kuang C, Ma Y, Zhou R, Zheng G, Fang Y, Xu Y, Liu X, So P T 2016 Phys. Rev. Lett. 117 028102

    [81]

    Ge B, Wang Y, Huang Y, Kuang C, Fang Y, Xiu P, Rong Z, Liu X 2016 Opt. Lett. 41 2013

    [82]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Grohans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. USA 110 21000

    [83]

    Wang P, Slipchenko M N, Mitchell J, Yang C, Potma E O, Xu X, Cheng J X 2013 Nat. Photon. 7 449

    [84]

    Jin N, Rahmat-Samii Y 2007 IEEE Trans. Antenn. Propag. 55 556

    [85]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [86]

    van Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [87]

    Park J H, Park C, Yu H S, Park J, Han S, Shin J, Ko S H, Nam K T, Cho Y H, Park Y K 2013 Nat. Photon. 7 454

    [88]

    Fang Z, Zhu X 2013 Adv. Mater. 25 253840

    [89]

    Zhang W, Fang Z, Zhu X 2016 Chem. Rev. 117 5095

    [90]

    Diekmann R, Helle O I, Oie C I, McCourt P, Huser T R, Schttpelz M, Ahluwalia B S 2017 Nat. Photon. 11 322

    [91]

    Roider C, Ritsch-Marte M, Jesacher A 2016 Opt. Lett. 41 3825

  • [1] 张佳, SamantaSoham, 王佳林, 王璐玮, 杨志刚, 严伟, 屈军乐. 一种用于线粒体受激辐射损耗超分辨成像的新型探针. 物理学报, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [2] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [3] 王佳林, 严伟, 张佳, 王璐玮, 杨志刚, 屈军乐. 受激辐射损耗超分辨显微成像系统研究的新进展. 物理学报, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [4] 李潇男, 关国荣, 刘忆琨, 梁浩文, 张爱琴, 周建英. 矢量光共焦扫描显微系统纳米标准样品的制备与物理测量精度. 物理学报, 2019, 68(14): 148102. doi: 10.7498/aps.68.20190252
    [5] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [6] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [7] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [8] 赵天宇, 周兴, 但旦, 千佳, 汪召军, 雷铭, 姚保利. 结构光照明显微中的偏振控制. 物理学报, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [9] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [10] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾. 物理学报, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [11] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法. 物理学报, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [12] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [13] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [14] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [15] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究. 物理学报, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [16] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [17] 赵维谦, 陈珊珊, 冯政德. 图像复原式整形环形光横向超分辨共焦显微测量新方法. 物理学报, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
    [18] 刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵 栋. 星间激光通讯中的精跟踪研究. 物理学报, 2005, 54(11): 5149-5156. doi: 10.7498/aps.54.5149
    [19] 肖繁荣, 袁景和, 王桂英, 徐至展. 双Toraldo光瞳的共焦系统. 物理学报, 2004, 53(6): 1731-1734. doi: 10.7498/aps.53.1731
    [20] 刘 力, 邓小强, 王桂英, 徐至展. 改善共焦系统轴向分辨率的位相型光瞳滤波器. 物理学报, 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
计量
  • 文章访问数:  4416
  • PDF下载量:  549
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-07-05

基于点扫描的超分辨显微成像进展

  • 1. 浙江大学光电科学与工程学院, 现代光学仪器国家重点实验室, 杭州 310027
  • 通信作者: 匡翠方, cfkuang@zju.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2015CB352003)、国家重点研发计划(批准号:2016YFF0101400)、国家自然科学基金(批准号:61335003,61377013,61378051,61427818)、浙江省自然科学基金(批准号:LR16F050001)和中央高校基本科研业务费资助的课题.

摘要: 光学显微镜一直推动着现代科学技术的发展.随着科学的进步,对显微成像分辨率的要求在生物、材料等领域日渐凸显,而常规宽场显微成像一直面临着成像分辨率衍射受限的问题.1968年出现的共聚焦显微镜作为点扫描显微镜的开端第一次实现了远场下成像分辨率的突破,它具有层切性好、信噪比高等优点.在1994年出现的受激辐射荧光损耗显微镜将显微成像能力突破到2.8 nm左右,并成为目前效果最佳、应用较广泛的超分辨显微技术.荧光差分显微和饱和荧光吸收竞争等点扫描技术具有无荧光染剂限制、饱和光强低、光路简单等优势,并且能取得1/6波长的分辨能力,进而在超分辨显微领域仍有着发挥空间.Airyscan技术作为以上方法的补充可以弥补点扫描系统中由于探测小孔半径减小而带来的信号丢失,从而提高成像信噪比和分辨率,但阵列探测器成本较高.上述点扫描显微镜通过改变照明或者探测的方式实现了分辨率突破.本文详细讨论了点扫描超分辨方法的原理、成像效果及面临的瓶颈,并分析了点扫描超分辨显微镜在应用和技术上的趋势.

English Abstract

参考文献 (91)

目录

    /

    返回文章
    返回