搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面超透镜的远场超衍射极限聚焦和成像研究进展

秦飞 洪明辉 曹耀宇 李向平

引用本文:
Citation:

平面超透镜的远场超衍射极限聚焦和成像研究进展

秦飞, 洪明辉, 曹耀宇, 李向平

Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses

Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping
PDF
导出引用
  • 突破瑞利衍射极限,实现纯光学的远场超衍射极限聚焦和成像在科学和工程的各个领域都有重要意义.现有光学超分辨技术都存在一些固有的限制因素,如工作距离短、适用领域窄、不利于集成等问题.平面超透镜由于理论上的创新、设计灵活、效率高、方便集成等优势,成为实现超衍射极限的有效途径.本文综述了平面超透镜的物理原理及其在超衍射极限聚焦和成像方面近年来的研究进展,并讨论了该领域面临的问题和未来的研究重点和方向.
    Due to the fundamental laws of wave optics, the spatial resolution of traditional optical microscopy is limited by the Rayleigh criterion. Enormous efforts have been made in the past decades to break through the diffraction limit barrier and in depth understand the dynamic processes and static properties. A growing array of super-resolution techniques by distinct approaches have been invented, which can be assigned to two categories: near-field and far-field super-resolution techniques. The near-field techniques, including near-field scanning optical microscopy, superlens, hyperlens, etc., could break through the diffraction limit and realize super-resolution imaging by collecting and modulating the evanescent wave. However, near-field technique suffers a limitation of very short working distances because of the confined propagation distance of evanescent wave, and certainly produces a mechanical damage to the specimen. The super-resolution fluorescence microscopy methods, such as STED, STORM, PALM, etc., could successfully surpass the diffractive limit in far field by selectively activating or deactivating fluorophores rooted in the nonlinear response to excitation light. But those techniques heavily rely on the properties of the fluorophores, and the labelling process makes them only suitable for narrow class samples. Developing a novel approach which could break through the diffraction limit in far field without any near-field operation or labelling processes is of significance for not only scientific research but also industrial production. Recently, the planar metalenses emerge as a promising approach, owing to the theoretical innovation, flexible design, and merits of high efficiency, integratable and so forth. In this review, the most recent progress of planar metalenses is briefly summarized in the aspects of sub-diffractive limit focusing and super-resolution imaging. In addition, the challenge to transforming this academic concept into practical applications, and the future development in the field of planar metalenses are also discussed briefly.
      Corresponding author: Hong Ming-Hui, elehmh@nus.edu.sg;xiangpingli@jnu.edu.cn ; Li Xiang-Ping, elehmh@nus.edu.sg;xiangpingli@jnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61522504).
    [1]

    Airy G B 1835 Trans. Cambridge Phil. Soc. 5 283

    [2]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [5]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205

    [8]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [9]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [10]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [11]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [12]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935

    [13]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [14]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [15]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [16]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [17]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [18]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [19]

    Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [20]

    Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [21]

    Xie X, Chen Y, Yang K, Zhou J 2014 Phys. Rev. Lett. 113 263901

    [22]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Li Y, Ge J, Liu X 2013 Light Sci. Appl. 2 e108

    [23]

    Francia G T 1952 Nuovo Cimento. Suppl. 9 426

    [24]

    Li X, Venugopalan P, Ren H, Hong M, Gu M 2014 Opt. Lett. 39 5961

    [25]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [26]

    Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nature Commun. 3 1198

    [27]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [28]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72

    [29]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [30]

    Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X 2015 Sci. Rep. 5 18485

    [31]

    Qin F, Huang K, Wu J, Teng J, Qiu C W, Hong M 2017 Adv. Mater. 29 1602721

    [32]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl. Phys. Lett. 102 031108

    [33]

    Wang J, Qin F, Zhang D H, Li D, Wang Y, Shen X, Yu T, Teng J 2013 Appl. Phys. Lett. 102 061103

    [34]

    Huang K, Ye H, Teng J, Yeo S P, Luk'yanchuk B, Qiu C 2014 Laser Photon. Rev. 8 152

    [35]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [36]

    Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M 2015 Sci. Rep. 5 9977

    [37]

    Yuan G, Rogers E T, Roy T, Adamo G, Shen Z, Zheludev N I 2014 Sci. Rep. 4 6333

    [38]

    Qin F, Hong M 2017 Sci. China: Phys. Mech. 60 044231

    [39]

    Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T 2005 Nature 435 1210

    [40]

    Zheng R, Jiang L, Feldman M 2006 J. Vac. Sci. Technol. B 24 2844

    [41]

    Chen G, Zhang K, Yu A, Wang X, Zhang Z, Li Y, Wen Z, Li C, Dai L, Jiang S, Lin F 2016 Opt. Express 24 11002

    [42]

    Ye H, Qiu C W, Huang K, Teng J, Luk'yanchuk B, Yeo S P 2013 Laser Phys. Lett. 10 065004

    [43]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [44]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965

    [45]

    Berry M V 2013 J. Phys. A 46 205203

    [46]

    Huang F M, Chen Y, Garcia de Abajo F J, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 S285

    [47]

    Huang F M, Zheludev N, Chen Y, Garcia de Abajo F J 2007 Appl. Phys. Lett. 90 091119

    [48]

    Huang F M, Kao T S, Fedotov V A, Chen Y, Zheludev N I 2008 Nano Lett. 8 2469

    [49]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [50]

    Martınez-Corral M, Andres P, Zapata-Rodrıguez C J, Kowalczyk M 1999 Opt. Commun. 165 267

    [51]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [52]

    Liu T, Shen T, Yang S, Jiang Z 2015 J. Opt. 17 035610

    [53]

    Davis B J, Karl W C, Swan A K, Unlu M S, Goldberg B B 2004 Opt. Express 12 4150

    [54]

    Liu T, Tan J, Liu J 2010 Opt. Express 18 2822

    [55]

    Tian B, Pu J 2011 Opt. Lett. 36 2014

    [56]

    Liu T, Tan J, Liu J, Lin J 2013 J. Mod. Opt. 60 378

    [57]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008

    [58]

    Roy T, Rogers E T F, Zheludev N I 2013 Opt. Express 21 7577

    [59]

    Roy T, Rogers E T F, Yuan G, Zheludev N I 2014 Appl. Phys. Lett. 104 231109

    [60]

    Yuan G, Rogers E T, Roy T, Shen Z, Zheludev N I 2014 Opt. Express 22 6428

    [61]

    Yuan G, Vezzoli S, Altuzarra C, Rogers E T, Couteau C, Soci C, Zheludev N I 2016 Light Sci. Appl. 5 e16127

    [62]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photon. 10 60

    [63]

    Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M 2015 Nat. Commun. 6 8433

    [64]

    Yuan G, Rogers E T, Zheludev N I 2017 Light Sci. Appl. (In Press) doi: 101038/lsa.201736

    [65]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [66]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [67]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308

    [69]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818

    [70]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Luk'yanchuk B, Yang J K W, Qiu C W 2016 Laser Photon. Rev. 10 500

    [71]

    Qin F, Ding L, Zhang L, Monticone F, Chum C C, Deng J, Mei S, Li Y, Teng J, Hong M, Zhang S, Al A, Qiu C W 2016 Sci. Adv. 2 e1501168

    [72]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photon. Rev. 10 986

    [73]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445

    [74]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [75]

    Luo X 2015 Sci. China: Phys. Mech. 58 594201

    [76]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229

    [77]

    Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F 2016 Nano Lett. 16 4595

    [78]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069

    [79]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

  • [1]

    Airy G B 1835 Trans. Cambridge Phil. Soc. 5 283

    [2]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [5]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205

    [8]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [9]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [10]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [11]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [12]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935

    [13]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [14]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [15]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [16]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [17]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [18]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [19]

    Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [20]

    Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [21]

    Xie X, Chen Y, Yang K, Zhou J 2014 Phys. Rev. Lett. 113 263901

    [22]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Li Y, Ge J, Liu X 2013 Light Sci. Appl. 2 e108

    [23]

    Francia G T 1952 Nuovo Cimento. Suppl. 9 426

    [24]

    Li X, Venugopalan P, Ren H, Hong M, Gu M 2014 Opt. Lett. 39 5961

    [25]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [26]

    Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nature Commun. 3 1198

    [27]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [28]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72

    [29]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [30]

    Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X 2015 Sci. Rep. 5 18485

    [31]

    Qin F, Huang K, Wu J, Teng J, Qiu C W, Hong M 2017 Adv. Mater. 29 1602721

    [32]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl. Phys. Lett. 102 031108

    [33]

    Wang J, Qin F, Zhang D H, Li D, Wang Y, Shen X, Yu T, Teng J 2013 Appl. Phys. Lett. 102 061103

    [34]

    Huang K, Ye H, Teng J, Yeo S P, Luk'yanchuk B, Qiu C 2014 Laser Photon. Rev. 8 152

    [35]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [36]

    Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M 2015 Sci. Rep. 5 9977

    [37]

    Yuan G, Rogers E T, Roy T, Adamo G, Shen Z, Zheludev N I 2014 Sci. Rep. 4 6333

    [38]

    Qin F, Hong M 2017 Sci. China: Phys. Mech. 60 044231

    [39]

    Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T 2005 Nature 435 1210

    [40]

    Zheng R, Jiang L, Feldman M 2006 J. Vac. Sci. Technol. B 24 2844

    [41]

    Chen G, Zhang K, Yu A, Wang X, Zhang Z, Li Y, Wen Z, Li C, Dai L, Jiang S, Lin F 2016 Opt. Express 24 11002

    [42]

    Ye H, Qiu C W, Huang K, Teng J, Luk'yanchuk B, Yeo S P 2013 Laser Phys. Lett. 10 065004

    [43]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [44]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965

    [45]

    Berry M V 2013 J. Phys. A 46 205203

    [46]

    Huang F M, Chen Y, Garcia de Abajo F J, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 S285

    [47]

    Huang F M, Zheludev N, Chen Y, Garcia de Abajo F J 2007 Appl. Phys. Lett. 90 091119

    [48]

    Huang F M, Kao T S, Fedotov V A, Chen Y, Zheludev N I 2008 Nano Lett. 8 2469

    [49]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [50]

    Martınez-Corral M, Andres P, Zapata-Rodrıguez C J, Kowalczyk M 1999 Opt. Commun. 165 267

    [51]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [52]

    Liu T, Shen T, Yang S, Jiang Z 2015 J. Opt. 17 035610

    [53]

    Davis B J, Karl W C, Swan A K, Unlu M S, Goldberg B B 2004 Opt. Express 12 4150

    [54]

    Liu T, Tan J, Liu J 2010 Opt. Express 18 2822

    [55]

    Tian B, Pu J 2011 Opt. Lett. 36 2014

    [56]

    Liu T, Tan J, Liu J, Lin J 2013 J. Mod. Opt. 60 378

    [57]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008

    [58]

    Roy T, Rogers E T F, Zheludev N I 2013 Opt. Express 21 7577

    [59]

    Roy T, Rogers E T F, Yuan G, Zheludev N I 2014 Appl. Phys. Lett. 104 231109

    [60]

    Yuan G, Rogers E T, Roy T, Shen Z, Zheludev N I 2014 Opt. Express 22 6428

    [61]

    Yuan G, Vezzoli S, Altuzarra C, Rogers E T, Couteau C, Soci C, Zheludev N I 2016 Light Sci. Appl. 5 e16127

    [62]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photon. 10 60

    [63]

    Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M 2015 Nat. Commun. 6 8433

    [64]

    Yuan G, Rogers E T, Zheludev N I 2017 Light Sci. Appl. (In Press) doi: 101038/lsa.201736

    [65]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [66]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [67]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308

    [69]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818

    [70]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Luk'yanchuk B, Yang J K W, Qiu C W 2016 Laser Photon. Rev. 10 500

    [71]

    Qin F, Ding L, Zhang L, Monticone F, Chum C C, Deng J, Mei S, Li Y, Teng J, Hong M, Zhang S, Al A, Qiu C W 2016 Sci. Adv. 2 e1501168

    [72]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photon. Rev. 10 986

    [73]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445

    [74]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [75]

    Luo X 2015 Sci. China: Phys. Mech. 58 594201

    [76]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229

    [77]

    Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F 2016 Nano Lett. 16 4595

    [78]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069

    [79]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

计量
  • 文章访问数:  6390
  • PDF下载量:  862
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-09
  • 修回日期:  2017-05-31
  • 刊出日期:  2017-07-05

平面超透镜的远场超衍射极限聚焦和成像研究进展

    基金项目: 国家自然科学基金(批准号:61522504)资助的课题.

摘要: 突破瑞利衍射极限,实现纯光学的远场超衍射极限聚焦和成像在科学和工程的各个领域都有重要意义.现有光学超分辨技术都存在一些固有的限制因素,如工作距离短、适用领域窄、不利于集成等问题.平面超透镜由于理论上的创新、设计灵活、效率高、方便集成等优势,成为实现超衍射极限的有效途径.本文综述了平面超透镜的物理原理及其在超衍射极限聚焦和成像方面近年来的研究进展,并讨论了该领域面临的问题和未来的研究重点和方向.

English Abstract

参考文献 (79)

目录

    /

    返回文章
    返回