-
结构光照明显微(structured illumination microscopy,SIM)作为一种宽场超分辨光学显微成像技术,具有成像速度快、光漂白和光毒性弱等优点,是目前主流超分辨成像方法之一.在SIM技术中,正弦强度分布的条纹结构光场的对比度决定了SIM超分辨图像的质量.低的条纹对比度将导致样品中超衍射极限的高频信息被噪声掩盖,从而无法解析出超分辨信息.结构照明入射光的偏振态调控决定了干涉条纹的对比度,是SIM的关键技术.鉴于此,本文总结对比了几种典型的SIM系统偏振控制方法,同时提出了一种使用零级涡旋半波片的偏振控制方法.实验证明,与其他方法相比,采用零级涡旋半波片法可以获得更高效的偏振控制效果,具有系统结构简单、易使用、可将光能利用率提升到接近100%的优点.Structured illumination microscopy (SIM) is one of the most promising super-resolution techniques, owing to its advantages of fast imaging speed and weak photo bleaching. The quality of the SIM image is greatly dependent on the contrast of the sinusoidal fringe illumination patterns. Low fringe contrast illumination will seriously affect the super-resolution result and lead to additional artifacts. The generation of fringe patterns with high contrast is the key requirement in hardware for the SIM technique. This can be done by the interference of two laser beams diffracted from the phase gratings addressed on a spatial light modulator. Meanwhile, for maximal interference contrast, precise polarization control to maintain s-polarization for different fringe orientations is critical. In this paper, we review several typical polarization control methods in SIM, and propose a new method by using a zero-order vortex half-wave retarder (VHR). Compared with the other methods, the presented VHR-based polarization control method is very efficient in terms of simple system configuration, ease of use, and high light energy utilization efficiency near to 100%.
-
Keywords:
- structured illumination microscopy /
- super-resolution /
- polarization control /
- zero-order vortex half-wave retarder
[1] Abbe E 1873 Arc. F. Mikr. Anat. 9 413
[2] Conchello J A, Lichtman J W 2005 Nat. Methods 2 920
[3] Wicker K, Sindbert S, Heintzmann R 2009 Opt. Express 17 15491
[4] Hell S W, Wichmann J 1994 Opt. Lett. 19 780
[5] Klar T A, Hell S W 1999 Opt. Lett. 24 954
[6] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642
[7] Huang F, Hartwich T M P, Riveramolina F E, Lin Y, Duim W C, Long J J, Uchil P D, Myers J R, Baird M A, Mothes W 2013 Nat. Methods 10 653
[8] Huang B, Wang W, Bates M, Zhuang X 2008 Science 319 810
[9] Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793
[10] Heintzmann R, Cremer C G 1999 Proceedings of SPIE Stockholm, Sweden, January 19, 1999 p1399
[11] Gustafsson M G, Agard D A, Sedat J W 2000 Proceedings of SPIE San Jose, USA, May 2, 2000 p141
[12] Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nat. Methods 8 1044
[13] Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G 2008 Science 320 1332
[14] Shao L, Isaac B, Uzawa S, Agard D A, Sedat J W, Gustafsson M G 2008 Biophys. J. 94 4971
[15] Gustafsson M G 2005 Proc. Natl. Acad. Scis 102 13081
[16] Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Pasham M 2015 Science 349 aab3500
[17] Shroff S A, Fienup J R, Williams D R 2009 J. Opt. Soc.Am. A: Opt. Image Sci. Vis. 26 413
[18] Wicker K 2013 Opt. Express 21 24692
[19] Zhou X, Lei M, Dan D, Yao B, Yang Y, Qian J, Chen G, Bianco P R 2016 J. Biomed. Opt. 21 96009
[20] Kner P, Chhun B, Griffis E, Winoto L, Gustafsson M G 2009 Nat. Methods 6 339
[21] Fster R, Luwalther H W, Jost A, Kielhorn M, Kai W, Heintzmann R 2014 Opt. Express 22 20663
[22] Wen L H, Martin K, Fster R, Jost A, Kai W, Rainer H 2015 Methods Appl. Fluoresc. 3 014001
-
[1] Abbe E 1873 Arc. F. Mikr. Anat. 9 413
[2] Conchello J A, Lichtman J W 2005 Nat. Methods 2 920
[3] Wicker K, Sindbert S, Heintzmann R 2009 Opt. Express 17 15491
[4] Hell S W, Wichmann J 1994 Opt. Lett. 19 780
[5] Klar T A, Hell S W 1999 Opt. Lett. 24 954
[6] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642
[7] Huang F, Hartwich T M P, Riveramolina F E, Lin Y, Duim W C, Long J J, Uchil P D, Myers J R, Baird M A, Mothes W 2013 Nat. Methods 10 653
[8] Huang B, Wang W, Bates M, Zhuang X 2008 Science 319 810
[9] Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793
[10] Heintzmann R, Cremer C G 1999 Proceedings of SPIE Stockholm, Sweden, January 19, 1999 p1399
[11] Gustafsson M G, Agard D A, Sedat J W 2000 Proceedings of SPIE San Jose, USA, May 2, 2000 p141
[12] Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nat. Methods 8 1044
[13] Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G 2008 Science 320 1332
[14] Shao L, Isaac B, Uzawa S, Agard D A, Sedat J W, Gustafsson M G 2008 Biophys. J. 94 4971
[15] Gustafsson M G 2005 Proc. Natl. Acad. Scis 102 13081
[16] Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Pasham M 2015 Science 349 aab3500
[17] Shroff S A, Fienup J R, Williams D R 2009 J. Opt. Soc.Am. A: Opt. Image Sci. Vis. 26 413
[18] Wicker K 2013 Opt. Express 21 24692
[19] Zhou X, Lei M, Dan D, Yao B, Yang Y, Qian J, Chen G, Bianco P R 2016 J. Biomed. Opt. 21 96009
[20] Kner P, Chhun B, Griffis E, Winoto L, Gustafsson M G 2009 Nat. Methods 6 339
[21] Fster R, Luwalther H W, Jost A, Kielhorn M, Kai W, Heintzmann R 2014 Opt. Express 22 20663
[22] Wen L H, Martin K, Fster R, Jost A, Kai W, Rainer H 2015 Methods Appl. Fluoresc. 3 014001
计量
- 文章访问数: 9457
- PDF下载量: 464
- 被引次数: 0