-
Multi-wavelength confocal lens is an indispensable part of optical system, the traditional optical confocal system is often added by a certain number of optical lenses, or uses a different combination of optical lenses of different materials to implement multi-wavelength co-focusing,making the system possess a larger volume and weight, which, however, is difficult to meet the requirements for high integration and miniaturization of the system. As an optical element composed of two-dimensional planar subwavelength micro-element structure, the metalens has the advantages of flatness, ultra-thinness and regulating light waves, and has great potential applications in highly integrated and miniaturized optical confocal systems. According to relevant research reports, it is known that the existing research schemes of multi-wavelength confocal metalens have some shortcomings, such as relatively complex structure and relatively low focusing efficiency. In this work, a kind of metalens composed of simple micro-element structure is proposed and designed, which can simultaneously realize the long infrared dual wavelength confocal function. Based on the generalized Snell's law and the transmission phase modulation mechanism, a scientific evaluation function is established to select the optimal array of micro-elements structure to form a metalens. With the elliptical nano silicon column in a simple micro-element structure, the wavefront phase of the long infrared dual wavelength in the orthogonal linear polarization state can be adjusted independently and efficiently , while reducing the wavelength crosstalk and improving the focusing efficiency. The design results show that the proposed metalens achieves dual wavelength co-focused with a wavelength of 10.6 and 9.3 μm, and has a high focusing efficiency, The focusing spot is close to the diffraction limit. The quantitative analysis of the redundancy of the structural parameters of the metalens micro-element structure is made, and the trend of its influence on the focusing efficiency and the allowable deviation range of the micro-element structure parameters are obtained, which provides a theoretical basis for further precisely controlling the device fabrication. The matalens designed in this work is expected to meet the requirements for integration and miniaturization of long infrared optical confocal system, and has important applications in laser surgery, industrial cutting and welding and other fields.
-
Keywords:
- metalens /
- confocal /
- double wavelength
1. 引 言
长红外波长共聚焦透镜是光学共聚焦系统中必不可少的组成部分, 在激光外科手术[1,2]、工业切割焊接[3]等领域有着重要的应用价值, 例如激光外科手术中波长为10.6 μm的激光针对软组织手术、波长为9.3 μm的激光用于硬组织手术. 传统的光学共聚焦系统往往通过增加一定数量的光学透镜或者使用不同材料的光学透镜组合来实现多波长共聚焦, 势必使得系统具有较大的体积和重量, 难以满足系统高度集成化、微型化的需求.
超透镜[4-10]作为二维平面亚波长微元结构组成的光学元件, 其具有平坦、超薄、调控光波等优点, 在高度集成化、微型化的光学共聚焦系统中有巨大的应用潜力. 超透镜实现多波长共聚焦核心在于通过设计其亚波长微元结构来满足多波长的波前相位调控. 目前, 在可见光波段和近红外波段, 多种多波长共聚焦超透镜研究方案已经被提出. 例如, 通过在超透镜微元结构中填充多个纳米柱阵列耦合的方式来实现多波长共聚焦[11-14]; 通过超透镜微元结构中的纳米柱在平面空间上以扇形拼接或相互交织的方法来实现多波长共聚焦[15,16]; 通过超透镜微元结构中的金属纳米柱在垂直空间上以梯形叠加的形式来实现多波长共聚焦[17]; 通过超透镜微元结构在两侧级联叠加的方式来实现多波长共聚焦[18]; 然而, 在上述多波长共聚焦超透镜研究中存在结构相对复杂、聚焦效率相对较低等不足. 在中长红外波段, 超透镜研究主要集中在单波长聚焦[19-21]; 目前, 长红外多波长共聚焦超透镜还未见报道.
因此, 本文提出并设计了一种由简单微元结构组成的超透镜, 可同时实现长红外双波长共聚焦功能. 通过简单微元结构中的椭圆纳米硅柱可以独立地、高效地对正交线偏振态的长红外双波长的波前相位进行调控, 同时降低波长串扰并且提升聚焦效率. 首先根据广义斯涅耳定律[22-24]和传输相位调制机理[25,26]阐明了设计双波长共聚焦超透镜的理论基础; 其次采用时域有限差分法构建了双波长共聚焦超透镜微元结构参数与相位偏移量之间的映射关系; 最后建立了科学评价函数选取最优的微元结构排列组成超透镜. 设计结果表明: 该超透镜在波长10.6 μm的x线偏振光和波长9.3 μm的y线偏振态光入射时实现了双波长共聚焦, 其聚焦效率分别为83.03%, 61.07%, 聚焦光斑接近于衍射极限; 并定量分析了超透镜微元结构参数冗余度, 给出微元结构参数的变化对聚焦效率和聚焦光斑的影响. 本文所设计的超透镜有望应用于长红外微纳光学共聚焦系统中.
2. 总体设计原理与思路
2.1 设计原理
为了使不同波长入射光会聚到同一焦点处, 超透镜所提供的相位调控需要满足双曲相位分布公式:
φm(x,y)=2πλm(f−√x2+y2+f2),(m=1,2⋯), (1) 其中λm为目标波长; f为目标焦距; (x, y)为超透镜微元结构的坐标位置.
因此, 通过广义斯涅耳定律和传输相位原理精确地调控相位偏移量是本文设计的超透镜将长红外双波长聚焦到同一点的关键. 实际提供相位调控的是超透镜中的亚波长微元结构, 其引入的相位偏移量可以表示为[26]
φm=2πλmneffH (m=1,2⋯), (2) 其中λm为目标波长; neff为微元结构的有效折射率; H为微元结构高度.
同时, 为了够降低波长串扰并且提升共聚焦效率, 超透镜器件必须为长红外双波长提供独立且任意的波前相位调控. 根据超透镜微元结构对偏振态调制机理[27,28]得知, 超透镜器件的每个微元结构都可以被设计成偏振态相关的光学响应. 通过以上调制机理, 本文设计的超透镜可以用琼斯矩阵公式[27]来描述:
J(x,y)=[eiφx00eiφy] (3) 其中φx和φy表示波长为λ1的x线偏振光、波长为λ2的y线偏振光入射时超透镜提供的相位偏移量. 当相位偏移量满足双曲相位分布(1)式, 则表明设计的超透镜可以实现双波长共聚焦.
2.2 超透镜设计
根据以上理论分析, 本文提出的长红外双波长共聚焦超透镜, 是指其在波长λ1 = 10.6 μm的x线偏振光和波长λ2 = 9.3 μm的y线偏振光入射时聚焦于同一个焦点, 其效果示意如图1(a)所示. 该超透镜由排列在BaF2晶格基底 (n = 1.39)上椭圆纳米硅柱(n = 3.42)的微元结构阵列组成, 如图1(b)和图1(c)所示. 其中, Px, Py分别为超透镜微元结构在x, y方向上的周期; H为椭圆纳米硅柱的高度; Dx, Dy分别为椭圆纳米硅柱在x, y方向上的结构参数尺寸.
图 1 (a) 超透镜在波长10.6 μm的x线偏振光和波长9.3 μm的 y线偏振态入射条件下实现共聚焦示意图; (b) 超透镜微元结构示意图(主视图); (c) 超透镜微元结构示意图(俯视图)Fig. 1. (a) Schematic diagram of metalens confocal at the incident conditions of wavelength 10.6 and 9.3 μm with x and y orthogonal linear polarizations; (b) diagram of metalens unit cell structure (three-dimensional view); (c) diagram of metalens unit cell structure (top view).选择纳米硅柱作为微元结构材料是由于其在长红外波段具有高折射率和透过效率; 选择BaF2作为基底材料是因为其在长红外波段具有高透过效率. 为了椭圆纳米硅柱在10.6 μm的x和9.3 μm的y线偏振光入射下提供的相位偏移量φ1和φ2均覆盖0—2π的范围, 根据相位偏移量(2)式和琼斯矩阵(3)式, 运用时域有限差分法软件经过大量的数据仿真, 本文设定微元结构的周期Px、微元结构的周期Py、椭圆纳米硅柱的高度H分别为固定值6.2 μm, 6.2 μm和6.8 μm, 通过改变椭圆纳米硅柱的结构参数Dx, Dy来调控微元结构的有效折射率, 进而调控超透镜相位偏移量满足双曲相位分布(1)式来实现长红外双波长共聚焦.
根据以上长红外双波长共聚焦超透镜的设计, 应用时域有限差分法软件仿真计算在波长10.6 μm的x线偏振光、波长9.3 μm的y线偏振光垂直入射下, 超透镜微元结构中椭圆纳米硅柱的结构参数Dx, Dy与相位偏移量φx, φy和透过效率 tx, ty之间的映射关系, 如图2所示. 从图2中得出, 椭圆纳米硅柱提供的相位偏移量完全覆盖0—2π, 并且透过效率相对较高.
图 2 超透镜微元-相位偏移量分布图 (a) 波长10.6 μm, x线偏振态; (b) 波长9.3 μm, y线偏振态. 超透镜微元-透过效率分布图; (c) 波长10.6 μm, x线偏振态; (d) 波长9.3 μm, y线偏振态Fig. 2. Phase shift of metalens unit cell: (a) Wavelength 10.6 μm with x linear polarizations; (b) wavelength 9.3 μm with y linear polarizations. Transmission efficiency of metalens unit cell; (c) wavelength 10.6 μm with x linear polarizations; (d) wavelength 9.3 μm with y linear polarizations.根据(1)式计算出的长红外双波长共聚焦超透镜对应的目标相位偏移量φ1(x, y)和φ2(x, y); 鉴于衍射效率与量化阶数之间的关系[29], 对目标相位偏移量采用八阶量化, 再将量化后目标相位偏移量选取合适的超透镜微元结构来表征. 在此, 本实验室通过建立科学的评价函数Φ(x, y)[30]从映射关系图中优化选取合适的微元结构按照对应位置排列组成超透镜, 评价函数如(4)式所示.
Φ(x,y)=|1−exp(i|φx(x,y)−φ1(x,y)|)|+|1−exp(i|φy(x,y)−φ2(x,y)|)|+[1−tx(x,y)]+[1−ty(x,y)], (4) 其中φx(x, y), φy(x, y)和tx(x, y), ty(x, y)分别为超透镜微元结构参数为Dx(x, y)和Dy(x, y)时对应的实际相位偏移量和透过效率. 评价函数Φ(x, y)值越小, 则表示超透镜微元结构的实际相位偏移量φx(x, y), φy(x, y)和目标相位偏移量φ1(x, y)和φ2(x, y)偏差越小, 并且保证透过效率最大. 本文设计的长红外双波长共聚焦超透镜的目标相位偏移量如图3(a)和图3(d)所示, 根据评价函数优化选取的长红外双波长共聚焦超透镜的实际相位偏移量如图3(b)和图3(e)所示. 长红外双波长共聚焦超透镜每个微元结构所表征的实际相位偏移量与目标相位偏移量的差值如图3(c)和图3(f)所示. 通过计算得知波长10.6 μm的x线偏振光、波长9.3 μm的y线偏振光所对应的实际相位偏移量与目标相位偏移量的平均差值分别为0.058和0.0753. 表明本文设计的超透镜每个微元结构所表征的实际相位偏移量接近于目标相位偏移量, 且超透镜对波长10.6 μm的x线偏振光的波前相位调制能力高于波长9.3 μm的y线偏振光.
图 3 超透镜-目标相位偏移量分布图 (a) 波长10.6 μm, x线偏振态; (d) 波长9.3 μm, y线偏振态. 超透镜-实际相位偏移量分布图; (b) 波长10.6 μm, x线偏振态; (e) 波长9.3 μm, y线偏振态. 超透镜目标相位偏移量-实际相位偏移量差值图; (c) 波长10.6 μm, x线偏振态; (f) 波长9.3 μm, y线偏振态Fig. 3. Target phase shift of metalens: (a) Wavelength 10.6 μm with x linear polarizations; (d) wavelength 9.3 μm with y linear polarizations. Real phase shift of metalens; (b) wavelength 10.6 μm with x linear polarizations; (e) wavelength 9.3 μm with y linear polarizations. Difference value of Target phase shift and Real phase shift of metalens; (c) wavelength 10.6 μm with x linear polarizations; (f) wavelength 9.3 μm with y linear polarizations.根据以上长红外双波长共聚焦超透镜设计及其理论分析, 可以得出总体的设计思路如下: 1) 根据双曲相位分布公式计算出双波长共聚焦超透镜对应的目标相位偏移量; 2) 运用时域有限差分法建立微元结构参数与相位偏移量之间的映射关系; 3)通过评价函数选取合适的微元结构来表征目标相位偏移量; 4)按照对应位置排列微元结构组成长红外双波长共聚焦超透镜.
3. 超透镜的设计验证
3.1 超透镜共聚焦仿真验证
将基于上述原理与思路设计的超透镜微元结构导入时域有限差分法软件中进行建模仿真. 考虑到计算机运算能力的限制, 且为了得到良好的聚焦光斑, 根据奈奎斯特-香农采样定理本文在仿真中选取的超透镜微元个数为64×64. 在有限差分法软件中设置边界条件: 网格维度为三维仿真、网格X, Y方向设置为周期性(periodic)、网格Z方向设置为完美匹配层(PML). 将10.6 μm波长x偏振光、9.3 μm波长y线偏振光从BaF2基底垂直入射到超透镜, 焦距f为155 μm, 经过约1.5 h的仿真计算分别在x-z, y-z像平面上呈现出清晰的聚焦光斑, 如图4示. 仿真结果表明: 本文设计的超透镜实现了长红外双波长共聚焦的功能. 同时本文设计的超透镜在x-y焦平面上接收到的聚焦光斑, 如图5示.
图 4 仿真得到的超透镜像平面聚焦光斑图 (a) 波长10.6 μm, x线偏振态, x-z接收面; (b) 波长10.6 μm, x线偏振态、y-z接收面; (c) 波长9.3 μm, y线偏振态, x-z接收面; (d) 波长9.3 μm, y线偏振态、y-z接收面Fig. 4. Focus spot pattern of image plane of metalens obtained by simulation: (a) Wavelength 10.6 μm with x linear polarizations at x-z plane; (b) wavelength 10.6 μm with x linear polarizations at y-z plane; (c) wavelength 9.3 μm with y linear polarizations at x-z plane; (d) wavelength 9.3 μm with y linear polarizations at y-z plane;图 5 仿真得到的超透镜焦平面聚焦光斑图 (a)波长10.6 μm, x线偏振态、x-y接收面; (b) 波长9.3 μm, y线偏振态、x-y接收面. 聚焦光斑剖面图 (c) 波长10.6 μm, x线偏振态、x-y接收面; (d) 波长9.3 μm, y线偏振态、x-y接收面Fig. 5. Focus spot pattern of focal plane of metalens obtained by simulation: (a) Wavelength 10.6 μm with x linear polarizations at x-y plane; (b) wavelength 9.3 μm with y linear polarizations at x-y plane. Section views of focus spot; (c) wavelength 10.6 μm with x linear polarizations at x-y plane; (d) wavelength 9.3 μm with y linear polarizations at x-y plane.超透镜聚焦效率定义为聚焦光斑的光强与超透镜透过光强的比值[29,31,32]. 根据数据计算, 本文设计的长红外双波长共聚焦超透镜在数值孔径NA = 0.78的情况下, 波长为10.6 μm, x线偏振态光入射时, 超透镜聚焦效率为83.03%; 半峰全宽FWHM = 7.6 μm, 接近于衍射极限的半峰全宽FWHM = 0.514λ/NA = 6.81 μm. 波长为9.3 μm, y线偏振态光入射时, 超透镜聚焦效率为61.07%; 半峰全宽FWHM = 5.2 μm, 超越了衍射极限的半峰全宽FWHM = 0.514λ/NA = 5.98 μm.
因此, 通过上述长红外双波长共聚焦超透镜的仿真结果可知, 本文提出的超透镜在波长为10.6 μm, x线偏振光和波长为9.3 μm, y线偏振光入射的条件下实现了双波长共聚焦, 并具有较高的聚焦效率, 聚焦光斑接近于衍射极限.
3.2 超透镜微元结构冗余度分析
本小节重点定量分析了超透镜微元结构中的椭圆纳米硅柱(如图1所示)在z方向上的参数H变化, 椭圆纳米硅柱在x方向上的参数Dx变化、椭圆纳米硅柱在y方向上的参数Dy变化对超透镜聚焦效率和半峰全宽的影响, 如图6所示.
图 6 定量分析超透镜的微元结构参数变化对聚焦效率&半峰全宽的影响示意图 (a) 超透镜椭圆纳米硅柱的高度H变化影响示意图; (b) 超透镜椭圆纳米硅柱的参数Dx变化影响示意图; (c)超透镜椭圆纳米硅柱的参数Dy变化影响示意图Fig. 6. Schematic diagram of quantitative analysis of the influence of the variation of the parameters of unit cell of the metalens on the focusing efficiency & the full width at half maximum: (a) Schematic diagram of the influence of the height H variation on elliptic silicon nanopillar of the metalens; (b) schematic diagram of the influence of the parameter Dx variation on elliptic silicon nanopillar of the metalens; (c) schematic diagram of the influence of the parameter Dy variation on elliptic silicon nanopillar of the metalens.根据图6(a)数值计算得知, 超透镜微元结构中的椭圆纳米硅柱高度H的变化对波长为10.6 μm, x线偏振光的聚焦效率在±50 nm范围内的波动影响比较小, 数值变化范围为+1.2% — –1.01%, 在±50 — ±300 nm范围内的波动影响急剧上升, 数值变化范围为0% — –12.85%; 超透镜微元结构中的椭圆纳米硅柱高度H的变化对波长为9.3 μm, y线偏振光的衍射聚焦效率在±300 nm范围内的波动影响比较平缓, 数值变化范围为0% — –4.46%.
根据图6(b)数值计算得知, 超透镜微元结构中的椭圆纳米硅柱参数Dx的变化对波长为10.6 μm、x线偏振光的聚焦效率在–200—0 nm范围内的波动影响较小并呈略微上升的趋势, 数值变化范围为0% — +3.87%, 在0— +50 nm范围内的波动影响较小并呈略微下降的趋势, 数值变化范围为0% — –5.82%. 超透镜微元结构中的椭圆纳米硅柱参数Dx变化对波长为9.3 μm, y线偏振光的聚焦效率在±300 nm范围内的波动影响比较平缓, 数值变化范围为+1.31% — –6.39%;
根据图6(c)数值计算得知, 超透镜微元结构中的椭圆纳米硅柱参数Dy变化对波长为10.6 μm, x线偏振光的聚焦效率在–200 — +100 nm范围内的波动影响比较小, 数值变化范围为–4.53% — +2.87%. 超透镜微元结构中的椭圆纳米硅柱参数Dy变化对波长为9.3 μm, y线偏振光的聚焦效率在–100 — 0 nm范围内的波动影响较小并呈略微上升的趋势, 数值变化范围为0% — +2.5%, 在0 — +50 nm范围内的波动影响较小并呈略微下降的趋势, 数值变化范围为0%—5.75%.
根据图6(a)—(c)超透镜微元结构中的椭圆纳米硅柱高度H的变化、结构参数Dx, Dy变化对共聚焦点处的半波全宽影响可以忽略不计.
根据超透镜微元结构参数的变化对聚焦效率和半峰全宽的影响进行分析得知: 椭圆纳米硅柱结构参数H, Dx, Dy的允许偏差范围为±50 nm, –200 — +50 nm, –100 — 0 nm.
综上所述, 本文设计的超透镜实现了长红外双波长共聚焦的功能, 并且具有较高聚焦效率和较大微元结构参数冗余度. 针对超透镜椭圆纳米硅柱的高度H的变化对聚焦效率影响趋势得出: 其在波长为10.6 μm, x线偏振光方向的相位调控波动敏感度高于在波长为9.3 μm, y线偏振光的情况. 针对超透镜椭圆纳米硅柱参数Dx, Dy的变化对聚焦效率影响趋势得出: 聚焦效率略微上升是因为Dx, Dy变化后所代表的实际相位跟未量化的目标相位差值小于实际相位跟量化后目标相位的差值; 同时证明超透镜微元结构为双波长所提供的相位调控可以通过椭圆纳米硅柱的结构参数Dx, Dy来独立地进行调控.
4. 结 论
本文提出并设计了一种由椭圆纳米硅柱的简单微元结构排列组成的超透镜, 可实现长红外双波长共聚焦. 通过改变超透镜中椭圆纳米硅柱正交方向上的结构参数来实现对正交线性偏振态的长红外双波长进行独立且任意的相位调控, 通过评价函数选取最优的微元结构排列组成超透镜, 使其满足设计的目标相位. 仿真结果表明本文设计的超透镜在波长为10.6 μm, x线偏振光和波长9.3 μm, y线偏振光入射的条件下实现了长红外双波长共聚焦, 并具有较高聚焦效率、聚焦光斑接近于衍射极限, 最后对超透镜微元结构参数冗余度进行定量分析并得到其对聚焦效率影响趋势及允许偏差范围, 为后续进一步器件制作精度控制提供理论依据. 本文所设计的超透镜可以应用于激光外科手术、工业切割焊接等领域.
[1] Vitruk P 2017 Dental Town 17 62
[2] Linden E, Vitruk P 2015 Implant Pract. 8 30
[3] Bhadra R, Biswas P, Sankar M R 2015 Lasers based manufacturing (New Delhi: Springer) pp381–398
[4] Khorasaninejad M, Capasso F 2017 Science 358 1146
Google Scholar
[5] Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295
Google Scholar
[6] Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, & Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554
Google Scholar
[7] Chen M K, Wu Y, Feng L, Fan Q, Lu M, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414
Google Scholar
[8] Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805
Google Scholar
[9] Zou X, Zheng G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2
Google Scholar
[10] Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604
Google Scholar
[11] Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342
Google Scholar
[12] Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358
Google Scholar
[13] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139
Google Scholar
[14] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Optica 3 628
Google Scholar
[15] Lin D, Holsteen A L, Maguid E, Wetzstein G, Kik P G, Hasman E, Brongersma M L 2016 Nano Lett. 16 7671
Google Scholar
[16] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Sci. Rep. 6 32803
Google Scholar
[17] Avayu O, Almeida E, Prior Y, Ellenbogen T 2017 Nat. Commun. 8 14992
Google Scholar
[18] Yang H, Li G, Cao G, Yu F, Zhao Z, Ou K, Chen X, Lu Wei 2018 Opt. Mater. Express 8 1940
Google Scholar
[19] Fan Q, Liu M, Yang C, Yu L, Yan F, Xu T 2018 Appl. Phys. Lett. 113 01104
[20] Fan Q, Wang Y, Liu M, Xu T 2018 Opt. Lett. 43 6005
Google Scholar
[21] Zuo H, Choi D Y, Gai X, Ma P, Xu L, Neshev D N, Zhang B, Luther-Davies B 2017 Adv. Opt. Mater. 5 1700585
Google Scholar
[22] Yu N F, Genevet P, Kats M A, Aieta F 2011 Science 334 333
Google Scholar
[23] Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702
Google Scholar
[24] Luo X 2015 Sci. Chin.-Phys., Mech. Astron. 58 594201
Google Scholar
[25] Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709
Google Scholar
[26] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. 2016 Nano Lett. 16 7229
Google Scholar
[27] Mueller J, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett 118 113901
Google Scholar
[28] Yan C, Li X, Pu M, Ma X, Zhang F, Gao P, Liu K, Luo X 2019 Appl. Phys. Lett. 114 161904
Google Scholar
[29] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613
Google Scholar
[30] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东 2021 物理学报 70 084201
Google Scholar
Xu P, Xiao Y F, Huang H X, Yang T, Zhang X L, Yuan X, Li X C, Wang M Y, Xu H D 2021 Acta Phys. Sin. 70 084201
Google Scholar
[31] Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899
Google Scholar
[32] 刘逸天, 陈琦凯, 唐志远, 赵庆, 片思杰, 刘鑫航, 林宏焘, 郝翔, 刘旭, 马耀光 2021 中国光学 14 831
Google Scholar
Liu Y T, Chen Q K, Tang Z Y, Zhao Q, Pian S J, Liu X H, Lin H T, Hao X, Liu X, Ma Y G 2021 Chin. Opt. 14 831
Google Scholar
-
图 1 (a) 超透镜在波长10.6 μm的x线偏振光和波长9.3 μm的 y线偏振态入射条件下实现共聚焦示意图; (b) 超透镜微元结构示意图(主视图); (c) 超透镜微元结构示意图(俯视图)
Fig. 1. (a) Schematic diagram of metalens confocal at the incident conditions of wavelength 10.6 and 9.3 μm with x and y orthogonal linear polarizations; (b) diagram of metalens unit cell structure (three-dimensional view); (c) diagram of metalens unit cell structure (top view).
图 2 超透镜微元-相位偏移量分布图 (a) 波长10.6 μm, x线偏振态; (b) 波长9.3 μm, y线偏振态. 超透镜微元-透过效率分布图; (c) 波长10.6 μm, x线偏振态; (d) 波长9.3 μm, y线偏振态
Fig. 2. Phase shift of metalens unit cell: (a) Wavelength 10.6 μm with x linear polarizations; (b) wavelength 9.3 μm with y linear polarizations. Transmission efficiency of metalens unit cell; (c) wavelength 10.6 μm with x linear polarizations; (d) wavelength 9.3 μm with y linear polarizations.
图 3 超透镜-目标相位偏移量分布图 (a) 波长10.6 μm, x线偏振态; (d) 波长9.3 μm, y线偏振态. 超透镜-实际相位偏移量分布图; (b) 波长10.6 μm, x线偏振态; (e) 波长9.3 μm, y线偏振态. 超透镜目标相位偏移量-实际相位偏移量差值图; (c) 波长10.6 μm, x线偏振态; (f) 波长9.3 μm, y线偏振态
Fig. 3. Target phase shift of metalens: (a) Wavelength 10.6 μm with x linear polarizations; (d) wavelength 9.3 μm with y linear polarizations. Real phase shift of metalens; (b) wavelength 10.6 μm with x linear polarizations; (e) wavelength 9.3 μm with y linear polarizations. Difference value of Target phase shift and Real phase shift of metalens; (c) wavelength 10.6 μm with x linear polarizations; (f) wavelength 9.3 μm with y linear polarizations.
图 4 仿真得到的超透镜像平面聚焦光斑图 (a) 波长10.6 μm, x线偏振态, x-z接收面; (b) 波长10.6 μm, x线偏振态、y-z接收面; (c) 波长9.3 μm, y线偏振态, x-z接收面; (d) 波长9.3 μm, y线偏振态、y-z接收面
Fig. 4. Focus spot pattern of image plane of metalens obtained by simulation: (a) Wavelength 10.6 μm with x linear polarizations at x-z plane; (b) wavelength 10.6 μm with x linear polarizations at y-z plane; (c) wavelength 9.3 μm with y linear polarizations at x-z plane; (d) wavelength 9.3 μm with y linear polarizations at y-z plane;
图 5 仿真得到的超透镜焦平面聚焦光斑图 (a)波长10.6 μm, x线偏振态、x-y接收面; (b) 波长9.3 μm, y线偏振态、x-y接收面. 聚焦光斑剖面图 (c) 波长10.6 μm, x线偏振态、x-y接收面; (d) 波长9.3 μm, y线偏振态、x-y接收面
Fig. 5. Focus spot pattern of focal plane of metalens obtained by simulation: (a) Wavelength 10.6 μm with x linear polarizations at x-y plane; (b) wavelength 9.3 μm with y linear polarizations at x-y plane. Section views of focus spot; (c) wavelength 10.6 μm with x linear polarizations at x-y plane; (d) wavelength 9.3 μm with y linear polarizations at x-y plane.
图 6 定量分析超透镜的微元结构参数变化对聚焦效率&半峰全宽的影响示意图 (a) 超透镜椭圆纳米硅柱的高度H变化影响示意图; (b) 超透镜椭圆纳米硅柱的参数Dx变化影响示意图; (c)超透镜椭圆纳米硅柱的参数Dy变化影响示意图
Fig. 6. Schematic diagram of quantitative analysis of the influence of the variation of the parameters of unit cell of the metalens on the focusing efficiency & the full width at half maximum: (a) Schematic diagram of the influence of the height H variation on elliptic silicon nanopillar of the metalens; (b) schematic diagram of the influence of the parameter Dx variation on elliptic silicon nanopillar of the metalens; (c) schematic diagram of the influence of the parameter Dy variation on elliptic silicon nanopillar of the metalens.
-
[1] Vitruk P 2017 Dental Town 17 62
[2] Linden E, Vitruk P 2015 Implant Pract. 8 30
[3] Bhadra R, Biswas P, Sankar M R 2015 Lasers based manufacturing (New Delhi: Springer) pp381–398
[4] Khorasaninejad M, Capasso F 2017 Science 358 1146
Google Scholar
[5] Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295
Google Scholar
[6] Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, & Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554
Google Scholar
[7] Chen M K, Wu Y, Feng L, Fan Q, Lu M, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414
Google Scholar
[8] Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805
Google Scholar
[9] Zou X, Zheng G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2
Google Scholar
[10] Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604
Google Scholar
[11] Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342
Google Scholar
[12] Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358
Google Scholar
[13] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139
Google Scholar
[14] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Optica 3 628
Google Scholar
[15] Lin D, Holsteen A L, Maguid E, Wetzstein G, Kik P G, Hasman E, Brongersma M L 2016 Nano Lett. 16 7671
Google Scholar
[16] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Sci. Rep. 6 32803
Google Scholar
[17] Avayu O, Almeida E, Prior Y, Ellenbogen T 2017 Nat. Commun. 8 14992
Google Scholar
[18] Yang H, Li G, Cao G, Yu F, Zhao Z, Ou K, Chen X, Lu Wei 2018 Opt. Mater. Express 8 1940
Google Scholar
[19] Fan Q, Liu M, Yang C, Yu L, Yan F, Xu T 2018 Appl. Phys. Lett. 113 01104
[20] Fan Q, Wang Y, Liu M, Xu T 2018 Opt. Lett. 43 6005
Google Scholar
[21] Zuo H, Choi D Y, Gai X, Ma P, Xu L, Neshev D N, Zhang B, Luther-Davies B 2017 Adv. Opt. Mater. 5 1700585
Google Scholar
[22] Yu N F, Genevet P, Kats M A, Aieta F 2011 Science 334 333
Google Scholar
[23] Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702
Google Scholar
[24] Luo X 2015 Sci. Chin.-Phys., Mech. Astron. 58 594201
Google Scholar
[25] Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709
Google Scholar
[26] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. 2016 Nano Lett. 16 7229
Google Scholar
[27] Mueller J, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett 118 113901
Google Scholar
[28] Yan C, Li X, Pu M, Ma X, Zhang F, Gao P, Liu K, Luo X 2019 Appl. Phys. Lett. 114 161904
Google Scholar
[29] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613
Google Scholar
[30] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东 2021 物理学报 70 084201
Google Scholar
Xu P, Xiao Y F, Huang H X, Yang T, Zhang X L, Yuan X, Li X C, Wang M Y, Xu H D 2021 Acta Phys. Sin. 70 084201
Google Scholar
[31] Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899
Google Scholar
[32] 刘逸天, 陈琦凯, 唐志远, 赵庆, 片思杰, 刘鑫航, 林宏焘, 郝翔, 刘旭, 马耀光 2021 中国光学 14 831
Google Scholar
Liu Y T, Chen Q K, Tang Z Y, Zhao Q, Pian S J, Liu X H, Lin H T, Hao X, Liu X, Ma Y G 2021 Chin. Opt. 14 831
Google Scholar
计量
- 文章访问数: 6046
- PDF下载量: 179