搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双波长自锁模半导体薄片激光器

沈晓红 曾盈莹 毛琳 朱仁江 王涛 罗海军 佟存柱 汪丽杰 宋晏蓉 张鹏

引用本文:
Citation:

双波长自锁模半导体薄片激光器

沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏

Dual-wavelength self-mode-locked semiconductor disk laser

Shen Xiao-Hong, Zeng Ying-Ying, Mao Lin, Zhu Ren-Jiang, Wang Tao, Luo Hai-Jun, Tong Cun-Zhu, Wang Li-Jie, Song Yan-Rong, Zhang Peng
PDF
HTML
导出引用
  • 双波长锁模激光器在光通信、泵浦探针实验、非线性频率变换等方面应用广泛. 本文报道了一种双波长自锁模半导体薄片激光器. 利用增益芯片底部的高反射率分布布拉格反射镜和外部的耦合输出镜构成简单的直线型谐振腔, 腔内不需要额外的插入元件, 依靠增益介质的克尔效应, 结合激光芯片上泵浦光斑形成的软光阑, 即可启动锁模过程, 实现稳定的自锁模输出. 锁模脉冲宽度为4.3 ps, 重复频率为1.1 GHz, 最大输出功率为323.9 mW. 在锁模的基础上, 使用简单的刀片作为波长调谐元件, 通过改变刀片插入谐振腔的深度, 可连续调谐激光波长, 并在某一特殊位置, 获得稳定等强度的双波长输出. 实验中的稳定等强度双波长为951和961 nm, 对应的输出功率为32 mW. 该双波长对应的差频辐射为3.3 THz, 具有较好的应用潜力.
    Dual-wavelength mode-locked lasers can be widely used in optical communication, pump-probe experiment, nonlinear frequency conversion, etc. In this paper, a dual-wavelength self-mode-locked semiconductor disk laser is reported for the first time, to the best of our knowledge. A simple linear resonator is formed by using a high reflectivity distributed Bragg reflector at the bottom of the gain chip, and an external output mirror; the cavity length is about 135 mm, with no need of additional inserted elements. Based on the Kerr effect of the gain medium and the soft aperture formed by the pump spot on the gain chip, along with the fine adjustment of cavity length and pump intensity, the mode-locking process can be started from the free running and the stable self-mode-locking can be realized. The mode-locked pulse width is 4.3 ps, the repetition rate is 1.1 GHz, and the maximum output power is 323.9 mW, which corresponds to a peak power of 68 W. After the laser is mode locked, a readily available blade, which can introduce a wavelength-dependent loss for different laser modes, resulting in a lager cavity loss for a longer-wavelength mode and a smaller cavity loss for a shorter-wavelength mode, is used as a wavelength tuning element, and is inserted into the cavity in the direction perpendicular to the optical axis of the resonator. By changing the depth of the blade inserted into the cavity, the laser wavelength can be continuously tuned from the initial oscillating wavelength (longer-wavelength) to a shorter wavelength, a stable dual-wavelength output with equal intensity can be obtained at a specific position, and the stable continuous-wave mode-locking can be maintained simultaneously. The steady dual-wavelengths in the experiment are 951 and 961 nm, and the corresponding output power is 32 mW. The above dual-wavelength outputs have good coherence since they are stimulated radiations from the same gain chip. Meanwhile, they have relatively high peak power and strictly meet the coaxial conditions, and these are all advantages for the difference frequency generation (DFG). The frequency of the DFG in the experiment is approximately 3.3 THz, which can be widely used in laser radar, remote sensing, homeland security, counter-terrorism, atmospheric and environmental monitoring and otherareas.
      通信作者: 王涛, wangt@cqnu.edu.cn ; 张鹏, zhangpeng2010@cqnu.edu.cn
    • 基金项目: 在渝本科高校与中科院所属院所合作项目(批准号: HZ2021007)、国家自然科学基金(批准号: 61904024, 61975003, 61790584, 62025506)和重庆市教委科技计划重大项目(批准号: KJZD- M201900502)资助的课题.
      Corresponding author: Wang Tao, wangt@cqnu.edu.cn ; Zhang Peng, zhangpeng2010@cqnu.edu.cn
    • Funds: Project supported by the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences, Chongqing Municipal Education Commission (Grant No. HZ2021007), the National Natural Science Foundation of China (Grant Nos. 61904024, 61975003, 61790584, 62025506), and the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJZD-M201900502)
    [1]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D: Appl. Phys. 50 383001Google Scholar

    [2]

    Rahimi-Iman A 2016 J. Opt.-UK. 18 093003Google Scholar

    [3]

    Calvez S, Hastie J E, Guina M, Okhotnikov O G, Dawson M. D 2009 Laser Photonics Rev. 3 407Google Scholar

    [4]

    Esposito E, Keatings S, Gardner K, Harris J, Riis E, McConnell G 2008 Rev. Sci. Instrum. 79 083702Google Scholar

    [5]

    Wang C L, Chuang Y H, Pan C L 1995 Opt. Lett. 20 1071Google Scholar

    [6]

    Khalighi M A, Uysal M 2014 IEEE Commun. Surv. Tutorials 16 2231Google Scholar

    [7]

    Chen Y F, Tsai S W, Wang S C, Huang Y C, Lin T C, Wong B C 2002 Opt. Lett. 27 1809Google Scholar

    [8]

    Leinonen T, Morozov Y A, Harkonen A, Pessa M 2005 IEEE Photonics Technol. Lett. 17 2508Google Scholar

    [9]

    Fan L, Fallahi M, Hader J, Zakharian A R, Moloney J V, Stolz W, Koch S W, Bedford R, Murray J T 2007 Appl. Phys. Lett. 90 181124Google Scholar

    [10]

    Hessenius C, Terry N, Fallahi M, Moloney J, Bedford R 2010 Opt. Lett. 35 3060Google Scholar

    [11]

    Hessenius C, Lukowski M, Fallahi M 2012 Appl. Phys. Lett. 101 121110Google Scholar

    [12]

    Scheller M, Koch S W, Moloney J V 2012 Opt. Lett. 37 25Google Scholar

    [13]

    Zhang F, Gaafar M, Möller C, Stolz W, Koch M, Rahimi-Iman A 2016 IEEE Photonics Technol. Lett. 28 927Google Scholar

    [14]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [15]

    Zhang P, Mao L, Zhang X, Wang T, Wang L, Zhu R 2021 Opt. Express 29 16572Google Scholar

    [16]

    Scheller M, Baker C W, Koch S W, Moloney J V, Jones R J 2017 IEEE Photonics Technol. Lett. 29 790Google Scholar

    [17]

    De S, Baili G, Alouini M, Harmand J C, Bouchoule S, Bretenaker F 2014 Opt. Lett. 39 5586Google Scholar

    [18]

    Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D, Klenner A, Mayer A S, Gini E, Golling M, Keller U 2015 Light-Sci. Appl. 4 e310Google Scholar

    [19]

    Good J T, Holland D B, Finneran I A, Carroll P B, Kelley M J, Blake G A 2015 Rev. Sci. Instrum. 86 103107Google Scholar

    [20]

    Miller D A B 2000 IEEE J. Sel. Top. Quantum Electron. 6 1312Google Scholar

    [21]

    Keller U 2003 Nature 424 831Google Scholar

    [22]

    Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [23]

    Liu X, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar

    [24]

    Hoogland S, Dhanjal S, Tropper A C, Roberts J S, Haring R, Paschotta R, Morier-Genoud F, Keller U 2000 IEEE Photonics Technol. Lett. 12 1135Google Scholar

    [25]

    Gaafar M A, Rahimi-Iman A, Fedorova K A, Stolz W, Rafailov E U, Koch M 2016 Adv. Opt. Photonics 8 370Google Scholar

    [26]

    Chen Y F, Lee Y C, Liang H C, Lin K Y, Su K W, Huang K F 2011 Opt. Lett. 36 4581Google Scholar

    [27]

    Kornaszewski L, Maker G, Malcolm G P A, Butkus M, Rafailov E U, Hamilton C J 2012 Laser Photonics Rev. 6 L20Google Scholar

    [28]

    Bek R, Großmann M, Kahle H, Koch M, Rahimi-Iman A, Jetter M, Michler P 2017 Appl. Phys. Lett. 111 182105Google Scholar

    [29]

    Albrecht A R, Wang Y, Ghasemkhani M, Seletskiy D V, Cederberg J G, Sheik-Bahae M 2013 Opt. Express 21 28801Google Scholar

    [30]

    Cong Z, Tang D, De Tan W, Zhang J, Xu C, Luo D, Xu X, Li D, Xu J, Zhang X, Wang Q 2011 Opt. Express 19 3984Google Scholar

    [31]

    Scheller M, Baker C W, Koch S W, Moloney J V 2016 IEEE Photonics Technol. Lett. 28 1325Google Scholar

  • 图 1  自锁模SDLs实验简图

    Fig. 1.  Schematics of the self-mode-locked SDLs.

    图 2  自锁模SDLs输出的连续脉冲序列, 其上部插图为1 μs的时间扩展范围上的结果

    Fig. 2.  The continuous-wave mode-locked pulse of the self-mode-locked SDLs. The upper inset is the results in the time extended range of 1 μs.

    图 3  锁模脉冲的射频频谱, 其中1.1 GHz的基频信号即为脉冲的重复频率, 该值与自锁模SDLs的135 mm谐振腔长度严格对应

    Fig. 3.  The RF spectrum of mode-locked pulse train, in which the fundamental frequency signal of 1.1 GHz is the repetition frequency of the mode-locked pulses, which strictly corresponds to the 135 mm resonator cavity length of the self-mode-locked SDLs.

    图 4  锁模脉冲的自相关测量结果

    Fig. 4.  Autocorrelation trance of the mode-locked pulses.

    图 5  自锁模SDLs的激光光谱

    Fig. 5.  Laser spectrum of the self-mode-locked SDLs.

    图 6  SDLs的输出功率随泵浦功率变化曲线

    Fig. 6.  Output power of the SDLs versus pump power.

    图 7  锁模SDLs的光束质量M2因子

    Fig. 7.  Beam quality M2 factor of the mold-locked SDLs.

    图 8  用于获得双波长的SDLs结构简图

    Fig. 8.  Schematics of the dual-wavelength SDLs.

    图 9  泵浦功率为5.5 W时, SDLs的波长调谐和双波长输出, 及其相应的输出功率

    Fig. 9.  Wavelength tuning and dual-wavelength output of the SDLs, and the corresponding output power when the pump power is set as 5.5 W.

    图 10  双波长SDL自锁模输出的连续脉冲序列

    Fig. 10.  Pulse train of the dual-wavelength continuous-wave self-mode-locked SDL.

    图 11  双波长锁模脉冲的射频频谱, 其中的插图显示了四次谐波

    Fig. 11.  RF spectrum of the dual-wavelength mode-locked pulse train. The inset shows harmonics up to fourth.

  • [1]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D: Appl. Phys. 50 383001Google Scholar

    [2]

    Rahimi-Iman A 2016 J. Opt.-UK. 18 093003Google Scholar

    [3]

    Calvez S, Hastie J E, Guina M, Okhotnikov O G, Dawson M. D 2009 Laser Photonics Rev. 3 407Google Scholar

    [4]

    Esposito E, Keatings S, Gardner K, Harris J, Riis E, McConnell G 2008 Rev. Sci. Instrum. 79 083702Google Scholar

    [5]

    Wang C L, Chuang Y H, Pan C L 1995 Opt. Lett. 20 1071Google Scholar

    [6]

    Khalighi M A, Uysal M 2014 IEEE Commun. Surv. Tutorials 16 2231Google Scholar

    [7]

    Chen Y F, Tsai S W, Wang S C, Huang Y C, Lin T C, Wong B C 2002 Opt. Lett. 27 1809Google Scholar

    [8]

    Leinonen T, Morozov Y A, Harkonen A, Pessa M 2005 IEEE Photonics Technol. Lett. 17 2508Google Scholar

    [9]

    Fan L, Fallahi M, Hader J, Zakharian A R, Moloney J V, Stolz W, Koch S W, Bedford R, Murray J T 2007 Appl. Phys. Lett. 90 181124Google Scholar

    [10]

    Hessenius C, Terry N, Fallahi M, Moloney J, Bedford R 2010 Opt. Lett. 35 3060Google Scholar

    [11]

    Hessenius C, Lukowski M, Fallahi M 2012 Appl. Phys. Lett. 101 121110Google Scholar

    [12]

    Scheller M, Koch S W, Moloney J V 2012 Opt. Lett. 37 25Google Scholar

    [13]

    Zhang F, Gaafar M, Möller C, Stolz W, Koch M, Rahimi-Iman A 2016 IEEE Photonics Technol. Lett. 28 927Google Scholar

    [14]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [15]

    Zhang P, Mao L, Zhang X, Wang T, Wang L, Zhu R 2021 Opt. Express 29 16572Google Scholar

    [16]

    Scheller M, Baker C W, Koch S W, Moloney J V, Jones R J 2017 IEEE Photonics Technol. Lett. 29 790Google Scholar

    [17]

    De S, Baili G, Alouini M, Harmand J C, Bouchoule S, Bretenaker F 2014 Opt. Lett. 39 5586Google Scholar

    [18]

    Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D, Klenner A, Mayer A S, Gini E, Golling M, Keller U 2015 Light-Sci. Appl. 4 e310Google Scholar

    [19]

    Good J T, Holland D B, Finneran I A, Carroll P B, Kelley M J, Blake G A 2015 Rev. Sci. Instrum. 86 103107Google Scholar

    [20]

    Miller D A B 2000 IEEE J. Sel. Top. Quantum Electron. 6 1312Google Scholar

    [21]

    Keller U 2003 Nature 424 831Google Scholar

    [22]

    Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [23]

    Liu X, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar

    [24]

    Hoogland S, Dhanjal S, Tropper A C, Roberts J S, Haring R, Paschotta R, Morier-Genoud F, Keller U 2000 IEEE Photonics Technol. Lett. 12 1135Google Scholar

    [25]

    Gaafar M A, Rahimi-Iman A, Fedorova K A, Stolz W, Rafailov E U, Koch M 2016 Adv. Opt. Photonics 8 370Google Scholar

    [26]

    Chen Y F, Lee Y C, Liang H C, Lin K Y, Su K W, Huang K F 2011 Opt. Lett. 36 4581Google Scholar

    [27]

    Kornaszewski L, Maker G, Malcolm G P A, Butkus M, Rafailov E U, Hamilton C J 2012 Laser Photonics Rev. 6 L20Google Scholar

    [28]

    Bek R, Großmann M, Kahle H, Koch M, Rahimi-Iman A, Jetter M, Michler P 2017 Appl. Phys. Lett. 111 182105Google Scholar

    [29]

    Albrecht A R, Wang Y, Ghasemkhani M, Seletskiy D V, Cederberg J G, Sheik-Bahae M 2013 Opt. Express 21 28801Google Scholar

    [30]

    Cong Z, Tang D, De Tan W, Zhang J, Xu C, Luo D, Xu X, Li D, Xu J, Zhang X, Wang Q 2011 Opt. Express 19 3984Google Scholar

    [31]

    Scheller M, Baker C W, Koch S W, Moloney J V 2016 IEEE Photonics Technol. Lett. 28 1325Google Scholar

  • [1] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [2] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [3] 毛琳, 张晓健, 李春玲, 朱仁江, 汪丽杰, 宋晏蓉, 王涛, 张鹏. 45 nm宽带可连续调谐半导体薄片激光器. 物理学报, 2021, 70(22): 224206. doi: 10.7498/aps.70.20210888
    [4] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [5] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [6] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [7] 林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏. 非线性克尔效应对飞秒激光偏振的超快调制. 物理学报, 2018, 67(23): 237801. doi: 10.7498/aps.67.20181450
    [8] 廖宇, 简小华, 崔崤峣, 张麒. 一种基于双波长的光声测温技术. 物理学报, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [9] 刘微粒, 邹晓兵, 付洋洋, 王鹏, 王新新. 基于克尔效应的真空绝缘子表面电场在线测量. 物理学报, 2014, 63(9): 095207. doi: 10.7498/aps.63.095207
    [10] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [11] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [12] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [13] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [14] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [15] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [16] 郭 璐, 卫 栋, 陈海霞, 熊德智, 王鹏军, 张 靖. 铷原子热蒸气中强非线性效应产生激光模式图样的实验研究. 物理学报, 2008, 57(7): 4224-4229. doi: 10.7498/aps.57.4224
    [17] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用. 物理学报, 2004, 53(2): 620-625. doi: 10.7498/aps.53.620
    [18] 陈树琪, 刘智波, 周文远, 田建国, 臧维平, 宋 峰, 张春平. 克尔介质中脉冲宽度对瞬态热光非线性效应的影响. 物理学报, 2004, 53(10): 3577-3582. doi: 10.7498/aps.53.3577
    [19] 吴曙东, 陈爱喜, 金丽霞. 微波激射器注入原子的反转特性. 物理学报, 2003, 52(7): 1630-1634. doi: 10.7498/aps.52.1630
    [20] 柴 路, 王清月, 张志刚, 赵江山, 王 勇, 张伟力, 邢歧荣. 用腔内半导体可饱和吸收镜钛宝石激光器中自锁模状态的实验研究. 物理学报, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
计量
  • 文章访问数:  3910
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-06-30
  • 上网日期:  2022-10-05
  • 刊出日期:  2022-10-20

/

返回文章
返回