搜索

x
中国物理学会期刊

基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器

CSTR: 32037.14.aps.68.20190297

Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter

CSTR: 32037.14.aps.68.20190297
PDF
HTML
导出引用
  • 报道了一种具有全光纤结构的双波长掺铒光纤激光器, 该激光器的核心器件为一款新型的多模-单模-多模光纤干涉滤波器. 该滤波器通过一段偏振保持光纤引入偏振依赖相位差, 因而其干涉滤波效果具有良好的偏振依赖特性. 入射抽运功率为50 mW时, 系统输出激光波长为1544.82 与1545.61 nm, 波长间隔0.8 nm, 双波长激光边模抑制比均大于45 dB, 输出峰值功率差小于1 dB, 功率波动在0.7 dB以内. 通过调整腔内的偏振控制器, 可实现双波长间隔的连续可调谐输出, 波长间隔的调谐范围为0—3 nm. 输出信号的偏振态测试结果显示, 系统保持精准的单偏振输出, 并且在不同的调谐条件下, 双波长激光表现出不同的偏振特性, 当双波长激光的偏振状态相互正交时, 系统的偏振消光比达到35 dB, 整体调谐过程表现出良好的偏振稳定度.

     

    A continuously spacing-tunable dual-wavelength erbium-doped all-fiber laser is proposed and experimentally demonstrated in this paper. The key component of the laser is a novel polarization-maintained multimode-single-mode-multimode fiber interference filter, which is composed of two single-mode-multimode-single-mode fiber mode converters with a polarization-maintaining fiber sandwiched between them. As the polarization-maintaining fiber gives rise to a polarization-dependent phase difference, the fiber filter shows good polarization-dependent characteristics in interference filtering. Based on the mode interference and polarization control, the good wavelength tuning results are obtained in experiment. An optimized length of 1.3 mm for multimode fiber and 1.5 mm for polarization-maintaining fiber are adopted based on the theoretical and experimental analysis. When the phase difference between the lasing in the fast axial direction and that in the slow axial direction is \textπ, the peaks and valleys in the transmission spectrum of the fiber filter correspond exactly to the two orthogonal polarization states. In the test, when the pump power is 50 mW, a high-quality dual-wavelength lasing output (at 1544.82 nm and 1545.61 nm) is observed to have side-mode suppression ratio better than 45 dB, the wavelength spacing of 0.8 nm, the peak power difference of less than 1 dB, and the output keeps stable with a small power fluctuation less than 0.7 dB. By adjusting the polarization controller in the ring cavity, two different dual-wavelength outputs can be obtained, which are corresponding to tuning Ⅰ and tuning Ⅱ. In tuning Ⅰ, a dual-wavelength lasing output in a wavelength spacing tuning range of 0−1.2 nm can be obtained within 1 dB peak power difference, correspondingly, 0−1.6 nm tuning range within 10 dB peak power difference. In tuning Ⅱ, with continuously adjusting the polarization controller, the short wavelength signal of the dual-wavelength output stops resonating, and simultaneously another wavelength signal near 1547.8 nm is excited, the switching is continuous and the system remains dual-wavelength output. In tuning Ⅱ, a maximum tuning range of 1.6−3 nm is obtained. In both of tuning Ⅰ and tuning Ⅱ, a 0−3 nm continuously spacing-tunable dual-wavelength output is obtained, all of which keep stable single-polarization operation. The test results show that the polarization state of the dual-wavelength lasing varies with tuning; a maximum polarization extinction ratio of 35 dB is obtained as the two wavelengths are orthogonally polarized.

     

    目录

    /

    返回文章
    返回