搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非互易旋电材料硅基矩形波导的色散特性研究

王慧莹 王智 崔粲 李航天 李强 詹翔空 王健 吴重庆

引用本文:
Citation:

非互易旋电材料硅基矩形波导的色散特性研究

王慧莹, 王智, 崔粲, 李航天, 李强, 詹翔空, 王健, 吴重庆

Dispersion characteristics of nonreciprocal gyroelectric silicon-on-insulator rectangular waveguide

Wang Hui-Ying, Wang Zhi, Cui Can, Li Hang-Tian, Li Qiang, Zhan Xiang-Kong, Wang Jian, Wu Chong-Qing
PDF
HTML
导出引用
  • 研究设计了基于光通信C波段旋电材料的矩形波导, 利用有效折射率法对波导有效折射率及横向电场分布进行求解, 得到矩形波导中$ {\rm{E}}_{mn}^x$导模的色散方程. 研究了在外磁场作用下表面磁等离子体激元的非互易传播特性. 还研究了结构参数和材料折射率对非互易色散关系、时延特性的影响. 结果表明: 其色散曲线随波导宽度的递增逐渐趋向平面波导; 群速度vg与波导宽度、传播常数、工作波长相关; 矩形波导芯区宽度在140—233.5 nm范围内的波导工艺容差较大; vg与矩形波导y方向包层材料折射率成正相关, 当材料为金属银时慢光效应最明显, 传输速度最小可以达到2.8 × 10–3c.
    A C-band rectangular waveguide with gyroelectric semiconductor is designed to study the non-reciprocal propagation characteristics of surface magnetoplasmons (SMPs), which are generated by an external magnetic field. The effective refractive index method is used to obtain the effective refractive index and transverse electric field distribution of the waveguide, and a two-dimensional rectangular waveguide is approximately regarded as a combination of two one-dimensional planar waveguides. The dispersion equation of planar waveguide with $ {\rm{E}}_{mn}^x$ mode in rectangular waveguide is derived. The influences of the structural parameters of rectangular waveguide and the refractive index of material on the non-reciprocal dispersion relation and time-delay characteristics are analyzed by numerical method. Due to the effect of external magnetic field, the off-diagonal elements of dielectric tensor in magnetic photonic crystal are changed. The generation of electrical anisotropy leads the time reversal symmetry to be broken. As a result, the dispersion curves of the rectangular waveguide are asymmetric with respect to propagation constant, and the complete one-way transmission of SMPs can be realized in the asymmetric frequency region. The dispersion curve tends to be a dispersion curve of planar waveguide as the width of rectangular waveguide increases, but the non-reciprocal frequency range is approximately unchanged. The width of the core region and the refractive index of the side material have a significant influence on the non-reciprocal dispersion characteristics: the group velocity of SMPs decreases with ω and propagation constant decreasing. The group velocity is related to the waveguide width, propagation constant and the operating wavelength. The relationship between the normalized group velocity and the width of the waveguide separately operating at 1530, 1550 and 1565 nm are studied. The group velocity is relatively slow when the width of waveguide’s core region is between 140 nm and 233.5 nm, and the minimum group velocity reaches 5.43 × 10-2c. As for the slow light effect, the rectangular waveguide is better than planar waveguide. The rectangular waveguide has a large engineering tolerance in the width of core region, which is 93.5 nm. In addition, the dispersion curves of the rectangular waveguide with SiO2, Air, Au and Ag as the left and right cladding layers are calculated. As a result, the group velocity is proportional to the refractive index of the side material in the y direction of the rectangular waveguide. The slow light effect is the most obvious when the material is silver, and the minimum transmission speed can reach 2.8 × 10-3c.
      通信作者: 王智, zhiwang@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61571035)和集成光电子学国家重点联合实验室(批准号: IOSKL2018KF22)资助的课题.
      Corresponding author: Wang Zhi, zhiwang@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571035) and the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2018KF22).
    [1]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [3]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [4]

    Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614Google Scholar

    [5]

    Armelles G, Cebollada A, García-Martín A, González M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [6]

    Brion J J, Wallis R F, Hartstein A, Burstein E 1972 Phys. Rev. Lett. 28 1455Google Scholar

    [7]

    Shen L, Wang Z, Deng X, Wu J J, Yang T J 2015 Opt. Lett. 40 1853Google Scholar

    [8]

    Shoji Y, Mizumoto T 2014 Sci. Technol. Adv. Mater. 15 014602Google Scholar

    [9]

    Chen S, Fan F, Wang X, Wu P, Zhang H, Chang S 2015 Opt. Express 23 1015Google Scholar

    [10]

    Shoji Y, Mizumoto T 2018 Opt. Mater. Express 8 2387Google Scholar

    [11]

    Jawad G N, Duff C I, Sloan R 2017 Trans. Microw. Theory Tech. 65 1249Google Scholar

    [12]

    Fan F, Xiong C Z, Chen J R, Chang S J 2018 Opt. Lett. 43 687Google Scholar

    [13]

    Śmigaj W, Romero-Vivas J, Gralak B, Magdenko L, Dagens B, Vanwolleghem M 2010 Opt. Lett. 35 568Google Scholar

    [14]

    Qiu W, Wang Z, Soljačić M 2011 Opt. Express 19 22248Google Scholar

    [15]

    Shoji Y, Miura K, Mizumoto T 2015 J. Opt. 18 013001

    [16]

    Huang D, Pintus P, Zhang C, Morton P, Shoji Y, Mizumoto T, Bowers J E 2017 Optica 4 23Google Scholar

    [17]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895Google Scholar

    [18]

    Haddadpour A, Nezhad V F, Yu Z, Veronis G 2016 Opt. Lett. 41 4340Google Scholar

    [19]

    Shen L, You Y, Wang Z, Deng X 2015 Opt. Express 23 950Google Scholar

    [20]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Boyd R W 2017 Science 356 1260Google Scholar

    [21]

    王健 2010 导波光学 (北京: 清华大学出版社) 第57页

    Wang J 2003 Wave Guiding Optics (Beijing: Tsinghua University Press) p57 (in Chinese)

  • 图 1  基于光通信C波段旋电材料的矩形波导结构

    Fig. 1.  Structure of rectangular waveguide with gyroelectric material in C-band.

    图 2  有效折射率法的两个等效平面波导截面图 (a) x方向受约束的平面波导PW1; (b) y方向受约束的平面波导PW2

    Fig. 2.  Sectional views of two equivalent planar waveguides by effective refractive index method: (a) Planar waveguide PW1 with x direction constraint; (b) planar waveguide PW2 with y direction constraint.

    图 3  (a)不同芯区宽度的矩形波导色散曲线; (b)不同芯区宽度的矩形波导中SMPs波单向传输区域的群速度; (c)不同波长的SMPs波群速度随芯区宽度的变化

    Fig. 3.  (a) Dispersion curves of rectangular waveguide with different core widths; (b) group velocity of one-way SMPs transmission region in rectangular waveguide with different widths; (c) variation of group velocity of SMPs with different wavelengths with different core widths.

    图 4  (a)不同材料的矩形波导色散曲线; (b)不同材料的矩形波导中SMPs波单向传输区域的群速度曲线

    Fig. 4.  (a) Dispersion curves of rectangular waveguide with different materials; (b) group velocity of one-way SMPs transmission region in rectangular waveguide with different materials.

  • [1]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [3]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [4]

    Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614Google Scholar

    [5]

    Armelles G, Cebollada A, García-Martín A, González M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [6]

    Brion J J, Wallis R F, Hartstein A, Burstein E 1972 Phys. Rev. Lett. 28 1455Google Scholar

    [7]

    Shen L, Wang Z, Deng X, Wu J J, Yang T J 2015 Opt. Lett. 40 1853Google Scholar

    [8]

    Shoji Y, Mizumoto T 2014 Sci. Technol. Adv. Mater. 15 014602Google Scholar

    [9]

    Chen S, Fan F, Wang X, Wu P, Zhang H, Chang S 2015 Opt. Express 23 1015Google Scholar

    [10]

    Shoji Y, Mizumoto T 2018 Opt. Mater. Express 8 2387Google Scholar

    [11]

    Jawad G N, Duff C I, Sloan R 2017 Trans. Microw. Theory Tech. 65 1249Google Scholar

    [12]

    Fan F, Xiong C Z, Chen J R, Chang S J 2018 Opt. Lett. 43 687Google Scholar

    [13]

    Śmigaj W, Romero-Vivas J, Gralak B, Magdenko L, Dagens B, Vanwolleghem M 2010 Opt. Lett. 35 568Google Scholar

    [14]

    Qiu W, Wang Z, Soljačić M 2011 Opt. Express 19 22248Google Scholar

    [15]

    Shoji Y, Miura K, Mizumoto T 2015 J. Opt. 18 013001

    [16]

    Huang D, Pintus P, Zhang C, Morton P, Shoji Y, Mizumoto T, Bowers J E 2017 Optica 4 23Google Scholar

    [17]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895Google Scholar

    [18]

    Haddadpour A, Nezhad V F, Yu Z, Veronis G 2016 Opt. Lett. 41 4340Google Scholar

    [19]

    Shen L, You Y, Wang Z, Deng X 2015 Opt. Express 23 950Google Scholar

    [20]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Boyd R W 2017 Science 356 1260Google Scholar

    [21]

    王健 2010 导波光学 (北京: 清华大学出版社) 第57页

    Wang J 2003 Wave Guiding Optics (Beijing: Tsinghua University Press) p57 (in Chinese)

  • [1] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究. 物理学报, 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [2] 李航天, 王智, 王慧莹, 崔粲, 李智勇. 磁光平面波导的单向传播特性. 物理学报, 2020, 69(7): 074206. doi: 10.7498/aps.69.20191795
    [3] 涂兴华, 赵宜超. 对称熔融拉锥型光纤光栅温度和应力传感特性. 物理学报, 2019, 68(24): 244204. doi: 10.7498/aps.68.20191034
    [4] 李丽君, 马茜, 曹茂永, 宫顺顺, 李文宪, 丁小哲, 刘仪琳, 徐琳, 刘倩. 全光纤干涉式结构中传感模式仿真分析. 物理学报, 2017, 66(22): 220202. doi: 10.7498/aps.66.220202
    [5] 王露, 叶鸣, 赵小龙, 贺永宁. 基于微波透射法的金属薄膜方块电阻测量理论及其应用. 物理学报, 2017, 66(20): 208801. doi: 10.7498/aps.66.208801
    [6] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究. 物理学报, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [7] 赵浩, 沈义峰, 张中杰. 光子晶体中基于有效折射率接近零的光束准直出射. 物理学报, 2014, 63(17): 174204. doi: 10.7498/aps.63.174204
    [8] 李丽君, 来永政, 曹茂永, 刘超, 袁雪梅, 张旭, 管金鹏, 史静, 李晶. 光纤纤芯及包层模有效折射率计算及仿真. 物理学报, 2013, 62(14): 140201. doi: 10.7498/aps.62.140201
    [9] 周文飞, 叶小玲, 徐波, 张世著, 王占国. 有效折射率微扰法研究单缺陷光子晶体平板微腔的性质. 物理学报, 2012, 61(5): 054202. doi: 10.7498/aps.61.054202
    [10] 龚建强, 梁昌洪. 基于TE10矩形波导的异向介质有效本构参数提取算法. 物理学报, 2011, 60(5): 059204. doi: 10.7498/aps.60.059204
    [11] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [12] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究. 物理学报, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [13] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [14] 赵天恩, 伍瑞新, 杨 帆, 陈 平. 周期性层状铁氧体-电介质复合材料中导模模式的有效负折射率. 物理学报, 2006, 55(1): 179-183. doi: 10.7498/aps.55.179
    [15] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [16] 李曙光, 冀玉领, 周桂耀, 侯蓝田, 王清月, 胡明列, 栗岩峰, 魏志义, 张 军, 刘晓东. 多孔微结构光纤中飞秒激光脉冲超连续谱的产生. 物理学报, 2004, 53(2): 478-483. doi: 10.7498/aps.53.478
    [17] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤的导波模式与色散特性. 物理学报, 2003, 52(11): 2811-2817. doi: 10.7498/aps.52.2811
    [18] 颜家壬, 黄国翔, 黄念宁. 矩形波导中两层流体界面上的非传播孤立波. 物理学报, 1988, 37(5): 874-880. doi: 10.7498/aps.37.874
    [19] 胡佩康. 含有铁氧体圆杆的矩形波导的散射矩阵及其等效线路. 物理学报, 1966, 22(9): 1069-1076. doi: 10.7498/aps.22.1069
    [20] 林为干. 矩形波导一个不连续性的等效电路. 物理学报, 1956, 12(5): 459-476. doi: 10.7498/aps.12.459
计量
  • 文章访问数:  8184
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-03-28
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回