搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

简单结构超表面实现波长和偏振态同时复用全息显示新方法

徐平 肖钰斐 黄海漩 杨拓 张旭琳 袁霞 李雄超 王梦禹 徐海东

引用本文:
Citation:

简单结构超表面实现波长和偏振态同时复用全息显示新方法

徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东

A new method of implementing simultaneous multiplexing holographic display of wavelength and polarization state with simple structure metasurface

Xu Ping, Xiao Yu-Fei, Huang Hai-Xuan, Yang Tuo, Zhang Xu-Lin, Yuan Xia, Li Xiong-Chao, Wang Meng-Yu, Xu Hai-Dong
PDF
HTML
导出引用
  • 本文基于衍射光学设计理论, 提出了仅用一种简单结构实现波长和偏振态同时复用全息显示新方法. 构建了不同入射条件下超表面微元的结构参数与透过相位之间的映射关系, 建立了科学的评价函数, 优化得到超表面每个像素点处最优的单一结构超表面微元尺寸. 仿真结果表明, 本文设计的超表面实现了波长为532 nm的x线偏振光和波长为633 nm的y线偏振光入射显示不同形状字符的功能.
    In this paper, we propose a new method to realize both polarization-multiplexing and wavelength-multiplexing using a simple structure, which can realize hologram by the multiplexing of double wavelengths and double polarization in the visible band. Our design can reduce color cross-talk and have a higher diffraction efficiency. We design a transmission metasurface composed of simple rectangular cells. Firstly, we establish the relationship of structural parameters with the transmission phase under various incident conditions of light beams. Then we propose a fitness function that can optimize the structural parameters of the unit cell at each pixel point, which can display different images by 532 nm x-polarization and 633 nm y-polarization incident light beams respectively. Finally, finite difference time domain method is used to analyze the structure, and the holographic result fits the theoretical design very well. This work proposes using single metasurface structure to solve the problems of wavelength cross-talk appearing when using simple structures, and will have great importance in coding and anti-counterfeiting.
      通信作者: 杨拓, yangtuo@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61275167) 和深圳市基础研究计划(批准号: JCYJ20180305125430954, JCYJ20170817102315892, JCYJ2017081701827765)资助的课题
      Corresponding author: Yang Tuo, yangtuo@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275167) and the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20180305125430954, JCYJ20170817102315892, JCYJ2017081701827765)
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [3]

    Khorasaninejad M, Crozier K B 2014 Nat. Commun. 5 5386Google Scholar

    [4]

    Khorasaninejad M, Zhu W, Crozier K B 2015 Optica 2 376Google Scholar

    [5]

    Khorasaninejad M, Chen W T, Devlin R C, Capasso F 2016 Science 352 1190Google Scholar

    [6]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J H, Luk’yanchuk B, Yang J K W, Qiu C W 2016 Laser Photonics Rev. 10 500Google Scholar

    [7]

    Jiang Q, Jin G F, Cao L C 2019 Adv. Opt. Photonics 11 518Google Scholar

    [8]

    Genevet P, Capasso F 2015 Rep. Prog. Phys. 78 024401Google Scholar

    [9]

    Jin L, Dong Z, Mei S, Yu Y F, Wei Z, Pan Z, Rezaei S D, Li X, Kuznetsov A I, Kivshar Y S, Yang J K W, Qiu C W 2018 Nano Lett. 18 8016Google Scholar

    [10]

    Dong F, Feng H, Xu L, Wang B, Song Z, Zhang X, Yan L, Li X, Tian Y, Wang W, Sun L, Li Y, Chu W 2019 ACS Photonics 6 230Google Scholar

    [11]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [12]

    徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar

    Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar

    [13]

    徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 物理学报 024202Google Scholar

    Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 024202Google Scholar

    [14]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar

    [15]

    Pan Y, Huang H X, Lei L, Zou Y, Xiao Y F, Yang T, Xu P 2019 Appl. Sci. 9 407Google Scholar

    [16]

    Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T 2016 Nanoscale Res. Letters. 11 485Google Scholar

    [17]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar

    [18]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun 6 7069Google Scholar

    [19]

    Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett. 118 113901Google Scholar

    [20]

    Wang B, Dong F, Li Q T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y F, Gong Q, Li Y 2016 Nano Lett. 16 5235Google Scholar

    [21]

    Wan W, Gao J, Yang X 2017 Opt. Mater. 5 1700541Google Scholar

    [22]

    Huang Y W, Chen W T, Tsai W Y, Wu P C, Wang C M, Sun G, Tsai D P 2015 Nano Lett. 15 3122Google Scholar

    [23]

    Qin F F, Liu Z Z Zhang Z, Zhang Q, Xiao J J 2018 Opt. Express 26 11577Google Scholar

    [24]

    Wan W, Gao J, Yang X 2106 ACS Nano 10 10671

    [25]

    Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T 2015 Opt. Express 23 3928Google Scholar

    [26]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468Google Scholar

    [27]

    Tang S W, Ding F, Jiang T, Cai T, X H X 2018 Opt. Express 26 23760Google Scholar

    [28]

    Wei Q S, Sain B, Wang Y T, Reineke B, Li Xiao W, Huang L L, Zentgraf T 2019 Nano Lett. 19 8964Google Scholar

    [29]

    Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nano-technol. 10 937Google Scholar

    [30]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [31]

    Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar

    [32]

    Yoon G, Lee D, Nam K T, Rho J 2017 ACS Photonics 5 1643

    [33]

    Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899Google Scholar

  • 图 1  (a) 超表面微元结构示意图; (b) 超表面在532 nm波长和633 nm波长、正交线偏振态下, 全息显示示意图

    Fig. 1.  (a) Schematic of unit cell structure consisting of Si nanobrick on the SiO2 substrate; (b) schematic of hologram metasurface at wavelength of 532 nm and 633 nm with orthogonal linear polarizations.

    图 2  超表面微元相位分布 (a) 532 nm波长、x线偏振态, (b) 633 nm波长、y线偏振态; 超表面微元透过效率分布 (c) 532 nm波长、x线偏振态, (d) 633 nm波长、y线偏振态

    Fig. 2.  Phase of the metasurface (a) at 532 nm for x-polarization light and (b) at 633 nm for y-polarization light. Transmission of the metasurface (c) at 532 nm for x-polarization light and (d) at 633 nm for y-polarization light.

    图 3  GS算法计算得到的经八阶量化后目标字符的相位分布 (a) CET字符; (b) SZU字符

    Fig. 3.  The phase distribution of the images using GS algorithm with eight-step: (a) Image“CET”; (b) image“SZU”.

    图 4  64种硅矩形柱对应的透过相位与理想组合相位的差值 (a) 532 nm波长、x线偏振态, (b) 633 nm波长、y线偏振态; 64种硅矩形柱对应的透过效率 (c) 532 nm波长、x线偏振态, (d) 633 nm波长、y线偏振态

    Fig. 4.  The deviation plot between the designed and ideal phase (a) at 532 nm for x-polarization light and (b) at 633 nm for y-polarization light. The transmission of the designed metasuface nanoblock (c) at 532 nm for x-polarization light and (d) at 633 nm for y-polarization light.

    图 5  (a) 超表面结构示意图; (b) 超表面3 × 3 像素点内硅矩形柱几何参数的尺寸L(n, m), W(n, m), 分别在532 nm波长、x偏振光和633 nm波长、y偏振光入射下对应的透过相位值和透过效率

    Fig. 5.  (a) Schematic of metasurface; (b) phase matrix, transmission matrix, length of rectangular unit cell matrix and width of rectangular unit cell matrix. This is shown for 3 × 3 pixel subsection of the metasurface.

    图 6  仿真得到的字符的全息再现像 (a) 532 nm波长、x线偏振态; (b) 633 nm波长、y线偏振态

    Fig. 6.  Simulated recovered image from the phase map of metasureface: (a) For x-polarization at 532 nm; (b) for y-polarization at 632 nm illumination.

  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [3]

    Khorasaninejad M, Crozier K B 2014 Nat. Commun. 5 5386Google Scholar

    [4]

    Khorasaninejad M, Zhu W, Crozier K B 2015 Optica 2 376Google Scholar

    [5]

    Khorasaninejad M, Chen W T, Devlin R C, Capasso F 2016 Science 352 1190Google Scholar

    [6]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J H, Luk’yanchuk B, Yang J K W, Qiu C W 2016 Laser Photonics Rev. 10 500Google Scholar

    [7]

    Jiang Q, Jin G F, Cao L C 2019 Adv. Opt. Photonics 11 518Google Scholar

    [8]

    Genevet P, Capasso F 2015 Rep. Prog. Phys. 78 024401Google Scholar

    [9]

    Jin L, Dong Z, Mei S, Yu Y F, Wei Z, Pan Z, Rezaei S D, Li X, Kuznetsov A I, Kivshar Y S, Yang J K W, Qiu C W 2018 Nano Lett. 18 8016Google Scholar

    [10]

    Dong F, Feng H, Xu L, Wang B, Song Z, Zhang X, Yan L, Li X, Tian Y, Wang W, Sun L, Li Y, Chu W 2019 ACS Photonics 6 230Google Scholar

    [11]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [12]

    徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar

    Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar

    [13]

    徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 物理学报 024202Google Scholar

    Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 024202Google Scholar

    [14]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar

    [15]

    Pan Y, Huang H X, Lei L, Zou Y, Xiao Y F, Yang T, Xu P 2019 Appl. Sci. 9 407Google Scholar

    [16]

    Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T 2016 Nanoscale Res. Letters. 11 485Google Scholar

    [17]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar

    [18]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun 6 7069Google Scholar

    [19]

    Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett. 118 113901Google Scholar

    [20]

    Wang B, Dong F, Li Q T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y F, Gong Q, Li Y 2016 Nano Lett. 16 5235Google Scholar

    [21]

    Wan W, Gao J, Yang X 2017 Opt. Mater. 5 1700541Google Scholar

    [22]

    Huang Y W, Chen W T, Tsai W Y, Wu P C, Wang C M, Sun G, Tsai D P 2015 Nano Lett. 15 3122Google Scholar

    [23]

    Qin F F, Liu Z Z Zhang Z, Zhang Q, Xiao J J 2018 Opt. Express 26 11577Google Scholar

    [24]

    Wan W, Gao J, Yang X 2106 ACS Nano 10 10671

    [25]

    Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T 2015 Opt. Express 23 3928Google Scholar

    [26]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468Google Scholar

    [27]

    Tang S W, Ding F, Jiang T, Cai T, X H X 2018 Opt. Express 26 23760Google Scholar

    [28]

    Wei Q S, Sain B, Wang Y T, Reineke B, Li Xiao W, Huang L L, Zentgraf T 2019 Nano Lett. 19 8964Google Scholar

    [29]

    Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nano-technol. 10 937Google Scholar

    [30]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [31]

    Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar

    [32]

    Yoon G, Lee D, Nam K T, Rho J 2017 ACS Photonics 5 1643

    [33]

    Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899Google Scholar

  • [1] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [2] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [3] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [5] 高乾程, 何泽浩, 刘珂瑄, 韩超, 曹良才. 面向纯相位型全息显示的自适应混合约束迭代算法. 物理学报, 2023, 72(2): 024203. doi: 10.7498/aps.72.20221690
    [6] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [7] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [8] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [9] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [10] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [11] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [12] 彭玮婷, 刘娟, 李昕, 薛高磊, 韩剑, 胡滨, 王涌天. 新颖材料器件为全息显示带来的新机遇. 物理学报, 2018, 67(2): 024213. doi: 10.7498/aps.67.20172026
    [13] 廖宇, 简小华, 崔崤峣, 张麒. 一种基于双波长的光声测温技术. 物理学报, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [15] 夏军, 常琛亮, 雷威. 基于液晶空间光调制器的全息显示. 物理学报, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [16] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [17] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [18] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [19] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [20] 顾晓玲, 郭 霞, 梁 庭, 林巧明, 郭 晶, 吴 迪, 徐丽华, 沈光地. GaN基双波长发光二极管电致发光谱特性研究. 物理学报, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
计量
  • 文章访问数:  8728
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-12-05
  • 上网日期:  2021-04-01
  • 刊出日期:  2021-04-20

/

返回文章
返回