搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铌酸锂双折射晶体的皮秒拍瓦激光系统光谱整形

张腾 李大为 王韬 崔勇 张天雄 王丽 张杰 徐光

引用本文:
Citation:

基于铌酸锂双折射晶体的皮秒拍瓦激光系统光谱整形

张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光

Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal

Zhang Teng, Li Da-Wei, Wang Tao, Cui Yong, Zhang Tian-Xiong, Wang Li, Zhang Jie, Xu Guang
PDF
HTML
导出引用
  • 为补偿皮秒拍瓦激光系统中钕玻璃宽带放大引起的增益窄化, 提出了一种基于铌酸锂双折射晶体的高能量光谱整形方法. 在相同强度调制下, 对比了BBO、铌酸锂和石英3种晶体, 针对1053 nm激光, 选用了高双折射率、大口径且不易潮解的铌酸锂作为整形晶体. 理论分析了晶体厚度、倾斜角、面内旋转角对强度调制的影响, 发现它们分别决定调制的带宽、中心波长及深度. 并对整形过程中晶体引入的光谱相位进行了分析, 发现各阶色散量随晶体厚度、倾斜角、面内旋转角变化的规律, 因此可通过上述参数控制各阶色散量. 在此基础上, 开展了中心波长为1053 nm、带宽为10 nm、调制深度为80%的光谱整形实验和相位测量实验, 实验与理论分析相一致. 针对神光Ⅱ皮秒拍瓦激光系统, 利用上述整形方案, 国内首次实现了1700 J, 6 nm (FWHM)的高能宽带激光输出, 有效补偿了增益窄化. 研究结果对国内基于钕玻璃放大系统的宽频带激光装置的工程研制具有重要意义.
    In recent years, chirped pulse amplification (CPA) technology injects vitality into the development of ultra-strong and ultra-short lasers. However, in the CPA based gain media, the gain narrowing effect limits the higher output of ultrashort pulse in energy, power, signal-to-noise ratio. In order to compensate for the gain narrowing caused by the broadband amplification of Nb:glass in picosecond pewter laser system, a method of high-energy spectral shaping is proposed based on LiNbO3 birefringent crystal, and the spectral phase introduced by the crystal is analysed for the first time. Based on the strict Jones matrix, the transmittance function of birefringent crystal and the spectral phase introduced by the crystal are obtained. Further, three kinds of birefringent crystals are compared among each other, and the results show that the higher birefringence and the smaller thickness are required to achieve the same intensity modulation. For the laser pulse at 1053 nm, LiNbO3 is selected as the spectral shaping crystal due to its high birefringence, large diameter, and non-deliquescent. The influences of crystal thickness, tilt angle, and in-plane rotation angle on the spectral intensity modulation are simulated theoretically, and the results show the above parameters affect the modulation bandwidth, center wavelength, and modulation depth of the shaping. By analyzing the spectral phase introduced by the crystal, it is found that the dispersion of each order changes with the thickness of the crystal, the tilt angle, and the in-plane rotation angle, and it is the most sensitive to the change of thickness. In addition, by controlling the dispersion of each order, the influence on the pulse signal-to-noise ratio can be weakened during spectrum shaping. On the basis of theoretical analysis, the shaping experiment with a center wavelength of 1053 nm, modulation bandwidth of 10 nm, and modulation depth of 80% is carried out. And the phase introduced by the LiNbO3 is measured. The experimental results are consistent with the theoretical analysis. For the Shenguang Ⅱ high-energy petawatt laser system, by the above-mentioned shaping scheme, a high-energy broadband laser output of 1700 J and 6 nm (FWHM) is realized for the first time in China, which is 2 times that at 3.2 nm when it is not shaped. The research effectively compensates for the Nb:glass gain narrowing effect, and will provide references for the parameter design, material selection and spectral phase compensation in the birefringent spectral shaping.
      通信作者: 李大为, lidw135@siom.ac.cn ; 徐光, xuguang@siom.ac.cn
    • 基金项目: 张江国家自主创新示范区专项发展资金重大项目(批准号: ZJ2020-ZD-006)资助的课题
      Corresponding author: Li Da-Wei, lidw135@siom.ac.cn ; Xu Guang, xuguang@siom.ac.cn
    • Funds: Project supported by the Major Program of the Zhangjiang National Innovation Demonstration Zone Special Development Fund, China (Grant No. ZJ2020-ZD-006)
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 219Google Scholar

    [2]

    Sauteret C, Husson D, Thiell G, Seznec S, Gary S, Migus A, Mourou G 1991 Opt. Lett. 16 238Google Scholar

    [3]

    Aoyama M, Yamakawa K, Akahane Y, Ma J, Inoue N, Ueda H, Kiriyama H 2003 Opt. Lett. 28 1594Google Scholar

    [4]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [5]

    Stuart B C, Herman S, Perry M D 1994 Conference on Lasers and Electro-Optics (California: Anaheim) pJFA3

    [6]

    曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 物理学报 49 1202Google Scholar

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar

    [7]

    楚晓亮, 张彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王逍, 王晓东, 周凯南, 郭仪 2005 物理学报 54 4696Google Scholar

    Wei X L, Zhang B, Cai B W, Wei X F, Zhu Q H, Huang X J, Yuan X D, Zeng X M, Liu L Q, Wang X, Wang X D, Zhou K N, Guo Y 2005 Acta Phys. Sin. 54 4696Google Scholar

    [8]

    郭爱林, 杨庆伟, 谢兴龙, 高奇, 薛志玲, 李美荣 2007 光学学报 27 272Google Scholar

    Guo A L, Yang Q W, Xie X L, Gao Q, Xue Z L, Li M R 2007 Acta Optica Sinica 27 272Google Scholar

    [9]

    郭爱林, 杨庆伟, 张福领, 孙美智, 毕群玉, 谢兴龙, 朱健强 2009 光学学报 29 1582Google Scholar

    Guo A L, Yang Q W, Zhang F L, Sun M Z, Bi Q Y, Xie X L, Zhu J Q 2009 Acta Optica Sinica 29 1582Google Scholar

    [10]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [11]

    Xia G, Fan W, Huang D J, Cheng H, Guo J T, Wang X Q 2019 High Power Laser Sci. Eng. 7 E9Google Scholar

    [12]

    刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 物理学报 54 2764Google Scholar

    Chu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Guo Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar

    [13]

    Rambo P 2008 International Conference on Ultrahigh Intensity Lasers (China: Shanghai) pp27−31

    [14]

    Preuss D R, Gole J L 1980 Appl. Opt. 19 702Google Scholar

    [15]

    Barty C P, Korn G, Raksi F, Rose-Petruck C, Squier J, Tien A C, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 219Google Scholar

    [16]

    Lu X M, Li C, Leng Y X, Wang C, Zhang C M, Liang X Y, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 493

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X M, Ying C T 2008 Acta Optica Sinica 28 1767Google Scholar

    [18]

    Heritage J P, Weiner A M, Thurston R N 1985 Opt. Lett. 10 609Google Scholar

    [19]

    Spaeth M L, Manes K R, Kalantar D H, et al. 2017 Fusion Sci. Technol. 69 25Google Scholar

    [20]

    朱鹏飞, 杨镜新, 薛绍林, 李美荣, 林尊琪 2003 中国激光 30 1075Google Scholar

    Zhu P F, Yang J X, Xue S L, Li M R, Lin Z Q 2003 Chinese J. Lasers 30 1075Google Scholar

    [21]

    Wu F, Wang C, Hu J, Zhang Z, Yang X, Liu X, Liu Y, Ji P, Bai P, Qian J, Gui J, Xu Y, Leng Y 2020 Opt. Express 28 31743Google Scholar

    [22]

    Zhu X 1994 Appl. Opt. 33 3502Google Scholar

    [23]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. 36 1172Google Scholar

    [24]

    杨庆伟 2009 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)

    Yang Q W 2009 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

  • 图 1  倾斜双折射平板的厚度t、倾斜角θ和面内旋转角ϕ示意图[14]

    Fig. 1.  Schematic diagram of the thickness t, tilt angle θ, and in-plane rotation angle ϕ of the tilted birefringent plate[14].

    图 2  BBO、铌酸锂(LiNbO3)和石英(quartz) 3种晶体的对比图 (a) 3种晶体的双折射率曲线; (b) 3种晶体实现相同强度调制的透过率曲线

    Fig. 2.  Comparison graph of three crystals of BBO, LiNbO3, and quartz: (a) The birefringence curves of three crystals; (b) the transmittance curves of the three kinds of crystals achieve the same intensity modulation.

    图 3  θ = 85°, ϕ = 30°, t = 1.0, 1.5, 2.0 mm时, 透过率函数、晶体引入的光谱总相位及各阶色散的变化曲线 (a) t = 1.0, 1.5, 2.0 mm时, 透过率函数、光谱总相位随波长的变化曲线; (b) GVD, GDD, TOD, FOD随厚度t的变化

    Fig. 3.  The curve of transmittance function, total phase of the spectrum, and each order dispersion introduced by the crystal with θ = 85°, ϕ = 30°, t = 1.0, 1.5, 2.0 mm: (a) The transmittance function and total phase of spectrum changes with wavelength; (b) GVD, GDD, TOD, FOD changes with thickness t.

    图 4  ϕ = 30°, t = 1.5 mm, θ = 80°, 85°, 90°时, 透过率函数、晶体引入的光谱总相位及各阶色散的变化曲线 (a) 透过率函数、光谱总相位随波长的变化曲线; (b) GVD, GDD, TOD, FOD随厚度θ的变化

    Fig. 4.  The curve of transmittance function, total phase of the spectrum and each order dispersion introduced by the crystal with ϕ = 30°, t = 1.5 mm, θ = 80°, 85°, 90°: (a) The transmittance function and total phase of spectrum changes with wavelength; (b) GVD, GDD, TOD, FOD changes with thickness θ.

    图 5  θ = 85°, t = 1.5 mm, ϕ = 25°, 30°, 35°时, 透过率函数、晶体引入的光谱总相位及各阶色散的变化曲线 (a) 透过率函数、光谱总相位随波长的变化曲线; (b) GVD, GDD, TOD, FOD随厚度ϕ的变化

    Fig. 5.  The curve of transmittance function, total phase of the spectrum, and each order dispersion introduced by the crystal with θ = 85°, t = 1.5 mm, ϕ = 25°, 30°, 35°: (a) The transmittance function and total phase of spectrum changes with wavelength; (b) GVD, GDD, TOD, FOD changes with thickness ϕ.

    图 6  双折射晶体引入的三、四阶相位 (a) 三阶相位; (b) 四阶相位

    Fig. 6.  Third and fourth order phase introduced by birefringent crystal: (a) Third order phase; (b) fourth order phase.

    图 7  在高斯信号中加入三、四阶相位后的时域脉冲图 (a) 线性坐标时域图; (b)对数坐标时域图

    Fig. 7.  Time-domain pulse diagram of third and fourth order phase added to Gaussian signal: (a) Linear coordinate time domain diagram; (b) logarithmic coordinate time domain diagram.

    图 8  皮秒拍瓦激光系统装置框图及注入钕玻璃放大系统前的预补偿光谱图 (a) 神光Ⅱ高能拍瓦激光系统装置框图[23]; (b) 强度调制前后注入钕玻璃放大系统前的预补偿光谱实验和模拟图

    Fig. 8.  Block diagram of picosecond petawatt laser system and pre-compensation spectrum before injection of Nb:glass amplifier system: (a) Block diagram of ShenguangⅡhigh-energy petawatt laser system[23]; (b) pre-compensation spectrum experiment and simulation diagram before and after intensity modulation before injection of Nb:glass amplifier system.

    图 9  相位测量实验光路图及相位测量结果 (a) 相位测量实验光路图; (b)晶体引入相位的实验测量与模拟图

    Fig. 9.  Beam path diagram of phase measurement experiment and phase measurement results: (a) Beam path diagram of phase measurement experiment; (b) experimental measurement and simulation diagram of the phase introduced by the crystal.

    图 10  补偿增益窄化前后的输出光谱图与傅里叶变换极限脉冲比较图 (a) 补偿增益窄化与未补偿增益窄化的输出光谱实验图; (b) 补偿增益窄化与未补偿增益窄化的傅里叶变换极限脉冲

    Fig. 10.  Comparison of output spectrum and Fourier transform limit pulse before and after compensation gain narrowing: (a) Experimental graphs of output spectra of compensated gain narrowing and uncompensated gain narrowing; (b) the Fourier transform limit pulse with compensated gain narrowing and uncompensated gain narrowing.

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 219Google Scholar

    [2]

    Sauteret C, Husson D, Thiell G, Seznec S, Gary S, Migus A, Mourou G 1991 Opt. Lett. 16 238Google Scholar

    [3]

    Aoyama M, Yamakawa K, Akahane Y, Ma J, Inoue N, Ueda H, Kiriyama H 2003 Opt. Lett. 28 1594Google Scholar

    [4]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [5]

    Stuart B C, Herman S, Perry M D 1994 Conference on Lasers and Electro-Optics (California: Anaheim) pJFA3

    [6]

    曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 物理学报 49 1202Google Scholar

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar

    [7]

    楚晓亮, 张彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王逍, 王晓东, 周凯南, 郭仪 2005 物理学报 54 4696Google Scholar

    Wei X L, Zhang B, Cai B W, Wei X F, Zhu Q H, Huang X J, Yuan X D, Zeng X M, Liu L Q, Wang X, Wang X D, Zhou K N, Guo Y 2005 Acta Phys. Sin. 54 4696Google Scholar

    [8]

    郭爱林, 杨庆伟, 谢兴龙, 高奇, 薛志玲, 李美荣 2007 光学学报 27 272Google Scholar

    Guo A L, Yang Q W, Xie X L, Gao Q, Xue Z L, Li M R 2007 Acta Optica Sinica 27 272Google Scholar

    [9]

    郭爱林, 杨庆伟, 张福领, 孙美智, 毕群玉, 谢兴龙, 朱健强 2009 光学学报 29 1582Google Scholar

    Guo A L, Yang Q W, Zhang F L, Sun M Z, Bi Q Y, Xie X L, Zhu J Q 2009 Acta Optica Sinica 29 1582Google Scholar

    [10]

    姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201Google Scholar

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201Google Scholar

    [11]

    Xia G, Fan W, Huang D J, Cheng H, Guo J T, Wang X Q 2019 High Power Laser Sci. Eng. 7 E9Google Scholar

    [12]

    刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 物理学报 54 2764Google Scholar

    Chu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Guo Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar

    [13]

    Rambo P 2008 International Conference on Ultrahigh Intensity Lasers (China: Shanghai) pp27−31

    [14]

    Preuss D R, Gole J L 1980 Appl. Opt. 19 702Google Scholar

    [15]

    Barty C P, Korn G, Raksi F, Rose-Petruck C, Squier J, Tien A C, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 219Google Scholar

    [16]

    Lu X M, Li C, Leng Y X, Wang C, Zhang C M, Liang X Y, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 493

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X M, Ying C T 2008 Acta Optica Sinica 28 1767Google Scholar

    [18]

    Heritage J P, Weiner A M, Thurston R N 1985 Opt. Lett. 10 609Google Scholar

    [19]

    Spaeth M L, Manes K R, Kalantar D H, et al. 2017 Fusion Sci. Technol. 69 25Google Scholar

    [20]

    朱鹏飞, 杨镜新, 薛绍林, 李美荣, 林尊琪 2003 中国激光 30 1075Google Scholar

    Zhu P F, Yang J X, Xue S L, Li M R, Lin Z Q 2003 Chinese J. Lasers 30 1075Google Scholar

    [21]

    Wu F, Wang C, Hu J, Zhang Z, Yang X, Liu X, Liu Y, Ji P, Bai P, Qian J, Gui J, Xu Y, Leng Y 2020 Opt. Express 28 31743Google Scholar

    [22]

    Zhu X 1994 Appl. Opt. 33 3502Google Scholar

    [23]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. 36 1172Google Scholar

    [24]

    杨庆伟 2009 博士学位论文 (上海: 中国科学院上海光学精密机械研究所)

    Yang Q W 2009 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

  • [1] 赵娜, 欧阳建明, 邹德滨, 张国博, 甘龙飞, 邵福球. 基于锥形等离子体通道的百拍瓦激光脉冲整形及重离子加速. 物理学报, 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [2] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统. 物理学报, 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [3] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响. 物理学报, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [4] 王迪, 韩涛, 钱黄河, 刘智毅, 丁志华. 基于特征谱线与约束拟合相位的绝对波数标定方法. 物理学报, 2022, 71(21): 214203. doi: 10.7498/aps.71.20220314
    [5] 王迪, 韩涛, 钱黄河, 刘智毅, 丁志华. 基于特征谱线与约束拟合相位的绝对波数标定方法. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220314
    [6] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [7] 李大为, 王韬, 尹晓蕾, 李佳美, 王利, 张腾, 张天雄, 崔勇, 卢兴强, 王丽, 张杰, 徐光. 皮秒拍瓦激光系统宽带激光放大的精确模型和性能分析. 物理学报, 2021, 70(10): 104202. doi: 10.7498/aps.70.20201830
    [8] 曹奇志, 元昌安, 胡宝清, 任文艺, 赵银军, 张晶, 李建映, 邓婷, Mingwu Jin. 基于双折射晶体的快拍穆勒矩阵成像测偏原理分析. 物理学报, 2018, 67(10): 104209. doi: 10.7498/aps.67.20172604
    [9] 秦爽, 王兆华, 王羡之, 何会军, 沈忠伟, 魏志义. 饱和功率密度下线性啁啾对交叉偏振波输出特性的影响. 物理学报, 2017, 66(9): 094206. doi: 10.7498/aps.66.094206
    [10] 王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎. 水汽探测拉曼激光雷达的新型光谱分光系统设计与分析. 物理学报, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [11] 文锦辉, 刘俊, 张慧, 陈佳龙, 黄梓柱, 焦中兴, 赖天树. 改进型零附加相位光谱相位相干电场重构系统对啁啾脉冲的测量. 物理学报, 2010, 59(1): 370-375. doi: 10.7498/aps.59.370
    [12] 季玲玲, 陈伟, 曹迎春, 杨振宇, 陆培祥. 双折射光子晶体光纤中基于孤子分裂的超连续光谱产生. 物理学报, 2009, 58(8): 5462-5466. doi: 10.7498/aps.58.5462
    [13] 李 铭, 张 彬, 戴亚平, 王 韬, 范正修, 黄 伟. 用于钕玻璃啁啾脉冲放大系统光谱整形的多层介质膜反射镜. 物理学报, 2008, 57(8): 4898-4903. doi: 10.7498/aps.57.4898
    [14] 谢旭东, 王 逍, 朱启华, 曾小明, 王凤蕊, 黄小军, 周凯南, 王 方, 蒋东镔, 黄 征, 孙 立, 刘 华, 王晓东, 邓 武, 郭 仪, 张小民. 光谱分辨条纹相机测量高能啁啾脉冲特性. 物理学报, 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
    [15] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [16] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [17] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [18] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位. 物理学报, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [19] 张彦鹏, 甘琛利, 朱京平, 唐天同, 傅盘铭. 利用相位共轭极化拍频光谱术测量原子能级差与激光绝对频率. 物理学报, 1999, 48(9): 1667-1675. doi: 10.7498/aps.48.1667
    [20] 激光晶体研究组. [001]取向YAG激光棒的热致双折射效应. 物理学报, 1977, 26(2): 93-99. doi: 10.7498/aps.26.93
计量
  • 文章访问数:  5836
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2020-11-20
  • 上网日期:  2021-04-05
  • 刊出日期:  2021-04-20

/

返回文章
返回