搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大焦深离轴超透镜的设计与制作

丁继飞 刘文兵 李含辉 罗奕 谢陈凯 黄黎蓉

引用本文:
Citation:

大焦深离轴超透镜的设计与制作

丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉

Design and fabrication of off-axis meta-lens with large focal depth

Ding Ji-Fei, Liu Wen-Bing, Li Han-Hui, Luo Yi, Xie Chen-Kai, Huang Li-Rong
PDF
HTML
导出引用
  • 基于单层超表面结构, 设计并制作了一种具有大焦深的离轴超透镜. 利用相位叠加的设计方法, 将偏转与聚焦这两个功能合二为一以实现离轴聚焦, 并通过优化入射孔径和离轴偏转角来增大焦深. 实验结果表明: 当入射电磁波的频率为9 GHz时, 离轴偏转角为27.5°, 焦距为335.4 mm, 这与30° 和350 mm 的预设值比较符合. 在8, 9和10 GHz三个频率下的焦深分别为263.2, 278.5和298.2 mm, 分别对应波长的7.02倍、8.36倍和9.98倍. 该离轴超透镜结构简单, 具有良好的离轴聚焦能力和较大的焦深, 这在小型化、平面化的大焦深成像系统以及离轴光学系统中具有潜在的应用前景 .
    A kind of off-axis meta-lens with large focal depth based on a single-layer metasurface is designed and fabricated. Our proposed off-axis focus is realized by combining the two functions of deflection and focus through phase superposition method, and the focal depth can be increased by optimizing the input aperture and off-axis deflection angle. Three-dimensional finite difference time domain (FDTD) method is used for numerical simulation to construct the off-axis meta-lens, then the off-axis meta-lens is fabricated and its focus performance is tested in a microwave anechoic chamber.Experimental results indicate that at the designed electromagnetic wave frequency (9 GHz), the measured off-axis deflection angle is 27.5° and the focal length is 335.4 mm, which agree with the designed values of 30° and 350 mm. The measured full-wave half-maximum (FWHM) at the focal point is 48.2 mm, however, the simulated FWHM is 40.2 mm, which means that the imaging quality of the measured focus spot is slightly worse than the simulated one. This is mainly due to the fact that the actual parameters of the fabricated meta-lens are inconsistent with simulated parameters. In addition, during the measurement, the large sampling interval in the x- direction also leads to experimental errors.The focusing efficiency of the off-axis meta-lens at the working frequency of 9 GHz is calculated to be 16.9%. The main reason for the low focusing efficiency is that the plasmonic metasurface works in the transmission mode, which can manipulate only the cross-polarized component of the incident wave, and the maximum efficiency will not exceed 25%. Moreover, the focal depths at 8 GHz, 9 GHz and 10 GHz are 263.2 mm, 278.5 mm and 298.2 mm, respectively, which are 7.02 times, 8.36 times and 9.98 times the corresponding wavelengths, indicating that a larger focal depth off-focus meta-lens is achieved. This kind of off-axis meta-lens has a simple structure, good off-axis focus ability and large focal depth, which has potential applications in a compact and planar off-axis optical system and large focal depth imaging system. Although the working waveband in this article is the microwave band, according to the size scaling effect of the metasurface, it is also possible to design a large focal depth off-axis meta-lens in other bands such as visible light and terahertz bands by using the same method.
      通信作者: 黄黎蓉, lrhuang@mail.hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61675074)资助的课题
      Corresponding author: Huang Li-Rong, lrhuang@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675074)
    [1]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [2]

    Sun S L, H Q, Hao J M, Xiao S Y, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [3]

    Bi Y, Huang L L, Li X W, Wang Y T 2021 Front. Optoelectron 14 154

    [4]

    Wan Lei Pan D P, Feng T H, Liu W P, Potapov A A 2021 Front. Optoelectron. 14 1Google Scholar

    [5]

    Scheuer J 2017 Nanophotonics 6 137Google Scholar

    [6]

    Chen S Q, Li Z C, Liu W W, Cheng H, Tian J G 2019 Adv. Mater. 31 16

    [7]

    Liu T J, Huang L R, Hong W, Ling Y H, Luan J, Sun Y L, Sun W H 2017 Opt. Express 25 16332Google Scholar

    [8]

    Ding J F, Huang L R, Liu W B, Ling Y H, Wu W, Li H H 2020 Opt. Express 28 32721Google Scholar

    [9]

    Pan W, Wang X Y, Chen Q, Ren X Y, Ma Y 2020 Front. Optoelectron. 16 6

    [10]

    Ji C, Song J K, Huang C, Wu X Y, Luo X G 2019 Opt. Express 27 34Google Scholar

    [11]

    Ling Y H, Huang L R, Hong W, Liu T J, Luan J, Liu W B, Wang Z Y 2017 Opt. Express 25 29812Google Scholar

    [12]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

    [13]

    Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar

    [14]

    Chen W T, Zhu A Y, Sisler J, Bharwani Z, Capasso F 2019 Nat. Commun. 10 1Google Scholar

    [15]

    Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen L, Xu B B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [16]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 67Google Scholar

    [17]

    Groever B, Chen W T, Capasso F 2017 Nano Lett. 17 4902Google Scholar

    [18]

    Chen Q M, Li Y, Han Y H, Deng D, Yang D H, Zhang Y, Liu Y, Gao J M 2018 Appl. Opt. 57 7891Google Scholar

    [19]

    Paniagua-Dominguez R, Yu Y F, Khaidarow E, Choi S, Leong V, R, Bakker M, Liang X N, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar

    [20]

    范庆斌, 徐挺 2017 物理学报 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [21]

    杨皓明 2008 博士学位论文(天津: 南开大学)

    Yang H M 2008 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

    [22]

    Khorasaninejad M, Chen W T, Oh J, Capasso F 2016 Nano Lett. 16 3732Google Scholar

    [23]

    Zhu A Y, Chen W T, Khorasaninejad M, Oh J, Zaidi A, Mishra I, Devlin R C, Capasso F 2017 APL Photonics 2 036103Google Scholar

    [24]

    Zhou Y, Chen R, Ma Y G 2017 Opt. Lett. 42 4716Google Scholar

    [25]

    Zhu A Y, Chen W T, Sisler J, Yousef K M A, Lee E, Huang Y W, Qiu C W, Capasso F 2019 Adv. Opt. Mater. 7 1801144Google Scholar

    [26]

    Ou K, Li G H, Li T X, Yang H, Yu F L, Chen J, Zhao Z Y, Cao G T, Chen X S, Lu W 2018 Nanoscale 10 19154Google Scholar

    [27]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Photonics 5 5

    [28]

    Chen W T, Khhorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar

    [29]

    Chen C, Song W, Chen J W, Wang J H, Chen Y H, Xu B B, Chen M K, Li H M, Fang B, Chen J, Kuo H Y, Wang S M, Tsai D P, Zhu S, Li T 2019 Light Sci. Appl. 8 99Google Scholar

    [30]

    Zhou Y, Chen R, Ma Y G 2018 Appl. Sci. 8 3

    [31]

    Banerji S, Meem M, Majumder A, Vasquez F G, Sensale-Rodriguez B, Menon R 2019 Optica 6 6

  • 图 1  (a)基于超表面的波束偏转器; (b)常规的共轴超透镜; (c)离轴超透镜

    Fig. 1.  (a) Beam deflector based on metasurface; (b) conventional on-axis meta-lens; (c) off-axis meta-lens.

    图 2  (a)离轴超透镜的天线单元; (b)当频率为9 GHz的x偏振波垂直入射到天线单元时, 正交偏振波的透射率和透射相位随lx的变化关系; (c)满足(3)式的相位分布

    Fig. 2.  (a) Antenna unit of the off-axis meta-lens; (b) when an x-polarized wave with frequency of 9 GHz is incident perpendicularly onto the antenna units, transmittance and transmission phase of the orthogonal polarized wave vary with lx; (c) phase distributions satisfying Eq. (3).

    图 3  (a)制备的超表面样品的正面结构照片, 矩形红色虚线为局部放大图; (b)实验装置

    Fig. 3.  (a) Image of the fabricated metasurface sample, and the rectangular red dotted line is a zoom view; (b) experimental set-up.

    图 4  测试得到的不同频率处正交偏振波的电场强度分布 (a) 8 GHz; (b) 9 GHz; (c) 10 GHz. 红色点划线代表聚焦平面所在的位置, 倾斜的白色虚线代表u1轴、u2轴和u3

    Fig. 4.  Measured electric field intensity distributions of the orthogonal polarized waves at different frequencies: (a) 8 GHz; (b) 9 GHz; (c) 10 GHz. The red dotted lines represent the position of the focal planes, and the white dashed lines represent the u1 axis, u2 axis and u3 axis.

    图 5  工作频率9 GHz处, 透镜焦点处归一化电场强度分布 (a)仿真结果; (b)实验结果

    Fig. 5.  At the working frequency of 9 GHz, the normalized electric field intensity distribution at the focal point of the metalens: (a) Simulation result; (b) experimental result.

    图 6  测试得到的不同频率处的焦深 (a) 8 GHz; (b) 9 GHz; (c) 10 GHz

    Fig. 6.  Depth of focus at different frequencies: (a) 8 GHz; (b) 9 GHz; (c) 10 GHz.

    表 1  离轴超透镜的仿真结果和实验结果比较

    Table 1.  Simulation and experimental results of the off-axis metalens.

    入射波频
    率/GHz
    仿真结果实验结果
    α/(°)F0/mmDOF/mmα/(°)F0/mmDOF/mm
    833.2302.5223.630.5278.9263.2
    930.0350.0241.927.5335.4278.5
    1026.8385.3254.323.6400.2298.2
    下载: 导出CSV
  • [1]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [2]

    Sun S L, H Q, Hao J M, Xiao S Y, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [3]

    Bi Y, Huang L L, Li X W, Wang Y T 2021 Front. Optoelectron 14 154

    [4]

    Wan Lei Pan D P, Feng T H, Liu W P, Potapov A A 2021 Front. Optoelectron. 14 1Google Scholar

    [5]

    Scheuer J 2017 Nanophotonics 6 137Google Scholar

    [6]

    Chen S Q, Li Z C, Liu W W, Cheng H, Tian J G 2019 Adv. Mater. 31 16

    [7]

    Liu T J, Huang L R, Hong W, Ling Y H, Luan J, Sun Y L, Sun W H 2017 Opt. Express 25 16332Google Scholar

    [8]

    Ding J F, Huang L R, Liu W B, Ling Y H, Wu W, Li H H 2020 Opt. Express 28 32721Google Scholar

    [9]

    Pan W, Wang X Y, Chen Q, Ren X Y, Ma Y 2020 Front. Optoelectron. 16 6

    [10]

    Ji C, Song J K, Huang C, Wu X Y, Luo X G 2019 Opt. Express 27 34Google Scholar

    [11]

    Ling Y H, Huang L R, Hong W, Liu T J, Luan J, Liu W B, Wang Z Y 2017 Opt. Express 25 29812Google Scholar

    [12]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

    [13]

    Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar

    [14]

    Chen W T, Zhu A Y, Sisler J, Bharwani Z, Capasso F 2019 Nat. Commun. 10 1Google Scholar

    [15]

    Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen L, Xu B B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [16]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 67Google Scholar

    [17]

    Groever B, Chen W T, Capasso F 2017 Nano Lett. 17 4902Google Scholar

    [18]

    Chen Q M, Li Y, Han Y H, Deng D, Yang D H, Zhang Y, Liu Y, Gao J M 2018 Appl. Opt. 57 7891Google Scholar

    [19]

    Paniagua-Dominguez R, Yu Y F, Khaidarow E, Choi S, Leong V, R, Bakker M, Liang X N, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar

    [20]

    范庆斌, 徐挺 2017 物理学报 66 144208Google Scholar

    Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208Google Scholar

    [21]

    杨皓明 2008 博士学位论文(天津: 南开大学)

    Yang H M 2008 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese)

    [22]

    Khorasaninejad M, Chen W T, Oh J, Capasso F 2016 Nano Lett. 16 3732Google Scholar

    [23]

    Zhu A Y, Chen W T, Khorasaninejad M, Oh J, Zaidi A, Mishra I, Devlin R C, Capasso F 2017 APL Photonics 2 036103Google Scholar

    [24]

    Zhou Y, Chen R, Ma Y G 2017 Opt. Lett. 42 4716Google Scholar

    [25]

    Zhu A Y, Chen W T, Sisler J, Yousef K M A, Lee E, Huang Y W, Qiu C W, Capasso F 2019 Adv. Opt. Mater. 7 1801144Google Scholar

    [26]

    Ou K, Li G H, Li T X, Yang H, Yu F L, Chen J, Zhao Z Y, Cao G T, Chen X S, Lu W 2018 Nanoscale 10 19154Google Scholar

    [27]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Photonics 5 5

    [28]

    Chen W T, Khhorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light Sci. Appl. 6 e16259Google Scholar

    [29]

    Chen C, Song W, Chen J W, Wang J H, Chen Y H, Xu B B, Chen M K, Li H M, Fang B, Chen J, Kuo H Y, Wang S M, Tsai D P, Zhu S, Li T 2019 Light Sci. Appl. 8 99Google Scholar

    [30]

    Zhou Y, Chen R, Ma Y G 2018 Appl. Sci. 8 3

    [31]

    Banerji S, Meem M, Majumder A, Vasquez F G, Sensale-Rodriguez B, Menon R 2019 Optica 6 6

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 李豪, 庞永强, 屈冰玥, 郑江山, 徐卓. 光学透明超表面透镜及其无线通信效率增强. 物理学报, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [4] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [6] 王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波. 基于低损光学相变和超透镜的可控多阱光镊. 物理学报, 2023, 72(2): 027801. doi: 10.7498/aps.72.20221794
    [7] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [9] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [12] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [13] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展. 物理学报, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [18] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [19] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
计量
  • 文章访问数:  6138
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-05-20
  • 上网日期:  2021-09-17
  • 刊出日期:  2021-10-05

/

返回文章
返回