搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低损光学相变和超透镜的可控多阱光镊

王焱 彭妙 程伟 彭政 成浩 臧圣寅 刘浩 任孝东 帅雨贝 黄承志 吴加贵 杨俊波

引用本文:
Citation:

基于低损光学相变和超透镜的可控多阱光镊

王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波

Controllable multi-trap optical tweezers based on low loss optical phase change and metalens

Wang Yan, Peng Miao, Cheng Wei, Peng Zheng, Cheng Hao, Zang Sheng-Yin, Liu Hao, Ren Xiao-Dong, Shuai Yu-Bei, Huang Cheng-Zhi, Wu Jia-Gui, Yang Jun-Bo
PDF
HTML
导出引用
  • 为提升光镊在三维空间中对粒子的捕获性能, 本文设计和分析了新型的双阱和多阱超透镜光镊方案. 首先基于低损耗相变材料Sb2S3设计了可控超透镜双阱光镊, 并对两个半径为250 mm的SiO2粒子所受光力进行了矢量横向分析和轴向分析. 仿真实验结果表明, 当Sb2S3在晶态下时, 超透镜捕获的两个粒子的横向光阱刚度$ {k}_{x}\rm{分}\rm{别} $达到了约25.7 pN/(μm·W)和37.4 pN/(μm·W), 轴向光阱刚度$ {k}_{z} $均约为10.0 pN/(μm·W); 而当Sb2S3在非晶态下时, $ {k}_{x} $$ {k}_{z} $值均降低到其对应晶态下的1/10, 且此时粒子在z方向上不能被稳定捕获, 从而实现了在三维空间中对粒子的可控捕获. 进一步本文给出了阵列式的可控多阱光镊. 通过调控相变材料Sb2S3的晶态和非晶态, 能形成不同组合粒子的三维捕获方案. 这些新型可控光镊可实现多种方式的三维空间粒子捕获, 提高了光镊的灵活性, 为超透镜在光镊领域中的应用提供了一种新思路.
    Novel dual-trap and multi-trap optical tweezers are designed and analyzed, in order to enhance the particle trapping performance of optical tweezers in three-dimensional (3D) space. Firstly, controllable dual-trap optical tweezers are proposed based on metalens and the low-loss optical phase-change material Sb2S3. The horizontal and axial analysis of the optical force acting on two 250-nm-radius SiO2 particles are also carried out. The simulation results show that when Sb2S3 is in the crystalline state, the transverse optical trap stiffness $ {k}_{x} $ of two particles reaches about 25.7 pN/(μm·W) and 37.4 pN/(μm·W), respectively, and the axial optical trap stiffness $ {k}_{z} $ for each particle is about 10.0 pN/(μm·W). When the Sb2S3 is in the amorphous state, both $ {k}_{x} $ and $ {k}_{z} $ are about 1/10 of the counterpart of its crystalline state. As a result, the particle is not stably trapped in the z-direction, and thus enabling the controllability of trapping particles in 3D space. Furthermore, array-type multi-trap optical tweezers are proposed. By regulating the crystal state and noncrystal state of phase-change material Sb2S3, it is convenient to form different combinations of 3D trap schemes. These new optical tweezers can realize 3D space particle trap in various ways, thereby improving the flexibility of optical tweezers, and providing a series of new ways of implementing the metalens-based optical tweezers.
      通信作者: 黄承志, chengzhi@swu.edu.cn ; 吴加贵, mgh@swu.edu.cn ; 杨俊波, yangjunbo@nudt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 60907003, 61805278, 61875168)、重庆市自然科学基金杰出青年基金(批准号: cstc2021jcyj-jqX0027)、西南大学创新研究2035先导计划(批准号: SWU-XDPY22012)、中国博士后科学基金(批准号: 2018M633704)、重庆市留学人员回国创新支持计划(批准号: cx2021008)、国防科技大学科学基金 (批准号: JC13-02-13, ZK17-03-01)、湖南省自然科学基金(批准号: 13JJ3001)和新世纪优秀人才计划 (批准号: NCET-12-0142)资助的课题.
      Corresponding author: Huang Cheng-Zhi, chengzhi@swu.edu.cn ; Wu Jia-Gui, mgh@swu.edu.cn ; Yang Jun-Bo, yangjunbo@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60907003, 61805278, 61875168), the Natural Science Funds for Distinguished Young Scientists of Chongqing, China (Grant No. cstc2021jcyj-jqX0027), the Innovation Research 2035 Pilot Plan of Southwest University, China (Grant No. SWU-XDPY22012), the China Postdoctoral Science Foundation (Grant No. 2018M633704), the Innovation Support Program for Overseas Students in Chongqing, China (Grant No. cx2021008), the Foundation of National University of Defense Technology, China (Grant Nos. JC13-02-13, ZK17-03-01), the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ3001), and the Program for New Century Excellent Talents in University (Grant No. NCET-12-0142).
    [1]

    Guo H L, Li Z Y 2013 Sci. China:Phys. Mech. Astron. 56 2351Google Scholar

    [2]

    Block S M, Goldstein L S B, Schnapp B J 1990 Nature 348 348Google Scholar

    [3]

    Ozcelik A, Rufo J, Guo F, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [4]

    Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11105Google Scholar

    [5]

    Ohlinger A, Deak A, Lutich A A, Feldmann J 2012 Phys. Rev. Lett. 108 018101Google Scholar

    [6]

    Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673Google Scholar

    [7]

    Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar

    [8]

    Zhang Y, Min C, Dou X, Wang X, Urbach H P, Somekh M G, Yuan X 2021 Light:Sci. Appl. 10 1Google Scholar

    [9]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [10]

    Ertaş D 1998 Phys. Rev. Lett. 80 1548Google Scholar

    [11]

    Duke T A J, Austin R H 1998 Phys. Rev. Lett. 80 1552Google Scholar

    [12]

    MacDonald M P, Paterson L, Volke-Sepulveda K, J Arlt, W Sibbett, K Dholakia 2002 Science 296 1101Google Scholar

    [13]

    Terray A, Oakey J, Marr D W M 2002 Science 296 1841Google Scholar

    [14]

    Emiliani V, Sanvitto D, Zahid M, Gerbal F, Coppey-Moisan M 2004 Opt. Express 12 3906Google Scholar

    [15]

    Shaw L A, Panas R M, Spadaccini C M, Hopkins J B 2017 Opt. Lett. 42 2862Google Scholar

    [16]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [17]

    MacDonald M P, Spalding G C, Dholakia K 2003 Nature 426 421Google Scholar

    [18]

    Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803Google Scholar

    [19]

    Zhang Y, Liu Z, Yang J, Yuan L 2012 Opt. Commun. 285 4068Google Scholar

    [20]

    Tam J M, Biran I, Walt D R 2004 Phys. Rev. Lett. 84 4289

    [21]

    Yin S, He F, Kubo W, Wang Q, Frame J, G. Green N, Fang X 2020 Opt. Express 28 38949Google Scholar

    [22]

    Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, Chattham N 2019 Crystals 9 515Google Scholar

    [23]

    Markovich H, Shishkin I I, Hendler N, Ginzburg P 2018 Nano Lett. 18 5024Google Scholar

    [24]

    Wang X, Dai Y, Zhang Y, Min C, and Yuan X 2018 ACS Photonics 5 2945Google Scholar

    [25]

    Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, Tsai D P 2021 Nanomaterials 11 1730Google Scholar

    [26]

    Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N, Zentgraf T 2020 Photonics Res. 8 1435Google Scholar

    [27]

    Ma Y, Rui G, Gu B, Cui Y 2017 Sci. Rep. 7 1Google Scholar

    [28]

    Li T, Xu X, Fu B, Wang S, Li B, Wang Z, Zhu S 2021 Photonics Res. 9 1062Google Scholar

    [29]

    Ikuma Y, Shoji Y, Kuwahara M, Wang X, Kintaka K, Kawashima H, Tanaka D, Tsuda, H 2010 Electron. Lett. 46 1460Google Scholar

    [30]

    Zhang Y, Chou J B, Li J, Li H, Du Q, Yadav A, Zhou S, Shalaginov M Y, Fang Z, Zhong H, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J 2019 Nat. Commun. 10 4279Google Scholar

    [31]

    Delaney M, Zeimpekis I, Du H, Yan X, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7 eabg3500Google Scholar

    [32]

    Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar

    [33]

    Chaumet P C, Nieto-vesperinas M 2000 Opt. Lett. 25 1065Google Scholar

    [34]

    Haraday Y, Asakura T 1996 Opt. Commun. 124 529Google Scholar

    [35]

    Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophotonics 2 021875Google Scholar

    [36]

    Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar

    [37]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Escarra, M D 2021 CLEO: QELS_Fundamental Science (Optica Publishing Group), May, 2021 pJTu3A.8

    [38]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Nguyen V, Sanghrea J, Escarra M D 2022 CLEO: Applications and Technology (Optica Publishing Group), May, 2022 pJTu3A-69

    [39]

    Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J, Xu B 2019 Appl. Sci. 9 4927Google Scholar

    [40]

    Song Y, Liu W, Wang X, Wang F, Wei Z, Meng H, Lin N, Zhang H 2021 Front. Phys. 9 651898Google Scholar

  • 图 1  用于双阱光镊的超透镜结构图 (a) A和B部分的Sb2S3均处于晶态; (b) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (c) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (d) A和B部分的Sb2S3均处于非晶态

    Fig. 1.  Structure of dual-trap optical tweezer metalens: (a) Sb2S3 in both parts A and B are in crystalline state; (b) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (c) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (d) Sb2S3 in both parts A and B are in amorphous state.

    图 2  (a)单元结构的结构图, 从上至下分别是高度H为1 μm和不同宽度长度比W/L的Sb2S3, 厚度T为0.03 μm的ITO层和SiO2基底, 单元结构周期P为0.5 μm; (b), (c) Sb2S3处于非晶态和晶态下, 纳米方柱不同宽度长度比W/L的PCE图; (d) Sb2S3纳米方柱L = 220 nm, W = 160 nm时, 相位和PCE与旋转角$ \theta $的关系图

    Fig. 2.  (a) Structural diagrams of the unit cell, from top to bottom, Sb2S3 with H of 1 μm and different W/L, ITO layer with T of 0.03 μm, and SiO2 base, and unit cell P of 0.5 μm, respectively; (b), (c) PCE diagrams of the nanosquare pillars with different W/ L when Sb2S3 is in the amorphous and crystalline states, respectively; (d) the plots of phase and PCE versus rotation angle $ \theta $ for Sb2S3 nanosquare pillars with L = 220 nm and W = 160 nm.

    图 3  xz平面和xy (z = 3.3 μm) 平面的电磁场强度分布图 (a), (b) A和B部分的Sb2S3均处于晶态; (c), (d) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (e), (f) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (g), (h) A和B部分的Sb2S3均处于非晶态

    Fig. 3.  The electromagnetic field intensity distribution in the xz plane and xy (z = 3.3 μm) plane, respectively: (a), (b) Sb2S3 in both parts A and B are in crystalline state; (c), (d) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (e), (f) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (g) , (h) Sb2S3 in both parts A and B are in amorphous state.

    图 4  施加在粒子上FxFz分别与x位移和z位移的关系图 (a) A和B部分的Sb2S3均处于晶态; (b) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (c) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (d) A和B部分的Sb2S3均处于非晶态

    Fig. 4.  Plots of Fx and Fz for the particle versus x displacement and z displacement, respectively: (a) Sb2S3 in both parts A and B are in crystalline state; (b) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (c) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (d) Sb2S3 in both parts A and B are in amorphous state.

    图 5  施加在粒子上Fyy位移关系图 (a) A部分的Sb2S3分别均处于晶态和非晶态; (b) B部分的Sb2S3分别均处于晶态和非晶态

    Fig. 5.  Plots of Fy for the particle versus y displacement: (a) Sb2S3 in part A is in the crystalline and amorphous states, respectively; (b) Sb2S3 in part A is in the crystalline and amorphous states, respectively.

    图 6  当A和B部分的Sb2S3为晶态时FxFz的势阱深度图 (a), (b) Fx的势阱深度Ux图; (c), (d) Fz的势阱深度Uz

    Fig. 6.  Potential depth plots of Fx and Fz when parts A and B are crystalline state: (a), (b) potential depth Ux plots of Fx; (c), (d) potential depth Uz plots of Fz.

    图 7  (a), (b) 用于多阱光镊的超透镜结构图, (a) 中间部分的Sb2S3处于非晶态, 其余部分的Sb2S3均处于晶态, (b)所有部分的Sb2S3均处于晶态; (c), (d) 分别为(a)状态下xy (z = 3.3 μm)平面和xz平面的电磁场强度分布图; (e), (f) 分别为(b)状态下xy (z = 3.3 μm)平面和xz平面的电磁场强度分布图

    Fig. 7.  (a), (b) Structure of the multi-trap optical tweezer metalens, (a) Sb2S3 in the middle part is in the amorphous state, and Sb2S3 in the rest parts are in the crystalline state, (b) Sb2S3 in all parts are in the crystalline state; (c), (d) the electromagnetic field intensity distributions in the xy (z = 3.3 μm) plane and xz plane in (a) state, respectively; (e), (f) the electromagnetic field intensity distributions of xy (z = 3.3 μm) plane and xz plane in (b) state, respectively.

    图 8  超透镜中间部分的Sb2S3在晶态和非晶态下 (a) 粒子受到的Fxx位移的关系; (b) 粒子受到的Fzz位移的关系; (c), (d) 超透镜中间部分的Sb2S3在晶态下状态下FxFz的势阱深度图

    Fig. 8.  Sb2S3 in the middle part of the multi-trap optical tweezer metalens under the crystalline and amorphous states: (a) Fx of particles versus x displacement; (b) Fz of particles versus z displacement; (c), (d) potential depth plots of Fx and Fz for Sb2S3 in the middle part of the multi-trap optical tweezer metalens in the crystalline state.

    图 9  超透镜其中6种聚焦状态的xy (z = 3.3 μm)平面和xz平面电磁场强度分布图来实现不同形状的捕获阵列 (a)—(c)和(g)—(i)为xy (z = 3.3 μm)平面强度分布图; (d)—(f)和(j)—(l)为对应的xz平面强度分布图

    Fig. 9.  Electromagnetic field intensity distribution of xy (z = 3.3 μm) plane and xz plane for six focusing states of the multi-trap optical tweezer metalens to achieve different shapes of trapping arrays: (a)–(c) and (g)–(i) are xy (z = 3.3 μm) planar intensity distributions; (d)–(f) and (j)–(l) are the corresponding xz planar intensity distributions.

  • [1]

    Guo H L, Li Z Y 2013 Sci. China:Phys. Mech. Astron. 56 2351Google Scholar

    [2]

    Block S M, Goldstein L S B, Schnapp B J 1990 Nature 348 348Google Scholar

    [3]

    Ozcelik A, Rufo J, Guo F, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [4]

    Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11105Google Scholar

    [5]

    Ohlinger A, Deak A, Lutich A A, Feldmann J 2012 Phys. Rev. Lett. 108 018101Google Scholar

    [6]

    Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673Google Scholar

    [7]

    Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar

    [8]

    Zhang Y, Min C, Dou X, Wang X, Urbach H P, Somekh M G, Yuan X 2021 Light:Sci. Appl. 10 1Google Scholar

    [9]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [10]

    Ertaş D 1998 Phys. Rev. Lett. 80 1548Google Scholar

    [11]

    Duke T A J, Austin R H 1998 Phys. Rev. Lett. 80 1552Google Scholar

    [12]

    MacDonald M P, Paterson L, Volke-Sepulveda K, J Arlt, W Sibbett, K Dholakia 2002 Science 296 1101Google Scholar

    [13]

    Terray A, Oakey J, Marr D W M 2002 Science 296 1841Google Scholar

    [14]

    Emiliani V, Sanvitto D, Zahid M, Gerbal F, Coppey-Moisan M 2004 Opt. Express 12 3906Google Scholar

    [15]

    Shaw L A, Panas R M, Spadaccini C M, Hopkins J B 2017 Opt. Lett. 42 2862Google Scholar

    [16]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [17]

    MacDonald M P, Spalding G C, Dholakia K 2003 Nature 426 421Google Scholar

    [18]

    Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803Google Scholar

    [19]

    Zhang Y, Liu Z, Yang J, Yuan L 2012 Opt. Commun. 285 4068Google Scholar

    [20]

    Tam J M, Biran I, Walt D R 2004 Phys. Rev. Lett. 84 4289

    [21]

    Yin S, He F, Kubo W, Wang Q, Frame J, G. Green N, Fang X 2020 Opt. Express 28 38949Google Scholar

    [22]

    Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, Chattham N 2019 Crystals 9 515Google Scholar

    [23]

    Markovich H, Shishkin I I, Hendler N, Ginzburg P 2018 Nano Lett. 18 5024Google Scholar

    [24]

    Wang X, Dai Y, Zhang Y, Min C, and Yuan X 2018 ACS Photonics 5 2945Google Scholar

    [25]

    Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, Tsai D P 2021 Nanomaterials 11 1730Google Scholar

    [26]

    Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N, Zentgraf T 2020 Photonics Res. 8 1435Google Scholar

    [27]

    Ma Y, Rui G, Gu B, Cui Y 2017 Sci. Rep. 7 1Google Scholar

    [28]

    Li T, Xu X, Fu B, Wang S, Li B, Wang Z, Zhu S 2021 Photonics Res. 9 1062Google Scholar

    [29]

    Ikuma Y, Shoji Y, Kuwahara M, Wang X, Kintaka K, Kawashima H, Tanaka D, Tsuda, H 2010 Electron. Lett. 46 1460Google Scholar

    [30]

    Zhang Y, Chou J B, Li J, Li H, Du Q, Yadav A, Zhou S, Shalaginov M Y, Fang Z, Zhong H, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J 2019 Nat. Commun. 10 4279Google Scholar

    [31]

    Delaney M, Zeimpekis I, Du H, Yan X, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7 eabg3500Google Scholar

    [32]

    Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar

    [33]

    Chaumet P C, Nieto-vesperinas M 2000 Opt. Lett. 25 1065Google Scholar

    [34]

    Haraday Y, Asakura T 1996 Opt. Commun. 124 529Google Scholar

    [35]

    Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophotonics 2 021875Google Scholar

    [36]

    Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar

    [37]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Escarra, M D 2021 CLEO: QELS_Fundamental Science (Optica Publishing Group), May, 2021 pJTu3A.8

    [38]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Nguyen V, Sanghrea J, Escarra M D 2022 CLEO: Applications and Technology (Optica Publishing Group), May, 2022 pJTu3A-69

    [39]

    Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J, Xu B 2019 Appl. Sci. 9 4927Google Scholar

    [40]

    Song Y, Liu W, Wang X, Wang F, Wei Z, Meng H, Lin N, Zhang H 2021 Front. Phys. 9 651898Google Scholar

  • [1] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [2] 白靖, 葛城显, 何浪, 刘轩, 吴振森. 椭圆波束对非均匀手征分层粒子的俘获特性研究. 物理学报, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [3] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作. 物理学报, 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [4] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术. 物理学报, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [5] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [6] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [7] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测. 物理学报, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [8] 张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平. 红外显微观测被俘获吸光性颗粒. 物理学报, 2013, 62(20): 208702. doi: 10.7498/aps.62.208702
    [9] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [10] 周丹丹, 任煜轩, 刘伟伟, 龚雷, 李银妹. 时间飞行法测量光阱刚度的实验研究. 物理学报, 2012, 61(22): 228702. doi: 10.7498/aps.61.228702
    [11] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [12] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力. 物理学报, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [13] 王霞, 王自霞, 吕浩, 赵秋玲. 全息干涉光学格点一到三维空间维度的简捷变换. 物理学报, 2010, 59(7): 4656-4660. doi: 10.7498/aps.59.4656
    [14] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [15] 杨 浩, 冯国英, 朱启华, 张大勇, 周寿桓. 聚焦光场俘获微球的FDTD分析. 物理学报, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [16] 曾夏辉, 吴逢铁, 刘 岚. 干涉理论对bottle beam的描述. 物理学报, 2007, 56(2): 791-797. doi: 10.7498/aps.56.791
    [17] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [18] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [19] 张艳丽, 赵逸琼, 詹其文, 李永平. 高数值孔径聚焦三维光链的研究. 物理学报, 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  2806
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-10-13
  • 上网日期:  2022-11-01
  • 刊出日期:  2023-01-20

/

返回文章
返回