搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向多光阱微粒捕获与实时直接观测技术

王玥 梁言生 严绍辉 曹志良 蔡亚楠 张艳 姚保利 雷铭

引用本文:
Citation:

轴向多光阱微粒捕获与实时直接观测技术

王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭

Axial multi-particle trapping and real-time direct observation

Wang Yue, Liang Yan-Sheng, Yan Shao-Hui, Cao Zhi-Liang, Cai Ya-Nan, Zhang Yan, Yao Bao-Li, Lei Ming
PDF
导出引用
  • 传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)Gerchberg-Saxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.
    The optical tweezers with the special advantages of non-mechanical contact and the accurate measurement of positions of particles, are a powerful manipulating tool in numerous applications such as in colloidal physics and life science. However, the standard optical tweezers system uses a single objective lens for both trapping and imaging. As a result, the trapping and imaging regions are confined to the volume near the focal plane of the objective lens, making it difficult to track the trapped particles arranged in the axial direction. Therefore, multiple trapping along axial direction remains a challenge. The three-dimensional imaging technology can realize the monitoring of the axial plane, but neither the laser scanning microscopy nor the wide-field imaging technology can meet the requirement of the real-time imaging. To address this issue, we propose a modified axial-plane Gerchberg-Saxton (GS) iterative algorithm based on the Fourier transform in the axial plane. Compared with the direct algorithm such as the Fresnel lens method, the modified axial-plane GS iterative algorithm has a higher modulation efficiency, and the generated axial distribution has a sharper intensity. In theory, the traps generated each have an ideal Gaussian intensity distribution independently, which is proved by the simulation of reconstructed field. With such an iterative algorithm, we can directly create multiple point-trap array arranged along the axial direction. We also develop an axial-imaging scheme. In this scheme, the particles are trapped and a right-angled silver-coated 45 reflector is used to realize axial-plane imaging. The scheme is verified by imaging silica particles in an axial plane and a lateral plane simultaneously. Furthermore, we combine the axial-plane imaging technique with holographic optical tweezers, and demonstrate the simultaneous optical trapping in 22 trap array and the monitoring of multiple silica particles in the axial plane. The trap stiffness of traps array in axial plane is calibrated by measuring the Brownian motion of the trapped particles in the axial trap array with digital video microscopy. The proposed technique provides a new perspective for optical micromanipulation, and enriches the functionality of optical micromanipulation technology, and thus it will have many applications in biological and physical research.
      通信作者: 姚保利, yaobl@opt.ac.cn;leiming@opt.ac.cn ; 雷铭, yaobl@opt.ac.cn;leiming@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61522511,81427802,11474352)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC005)资助的课题.
      Corresponding author: Yao Bao-Li, yaobl@opt.ac.cn;leiming@opt.ac.cn ; Lei Ming, yaobl@opt.ac.cn;leiming@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61522511, 81427802, 11474352) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC005).
    [1]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [2]

    Svoboda K, Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247

    [3]

    Fazal F M, Block S M 2011 Nat. Photon. 5 318

    [4]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [5]

    Min T L, Mears P J, Chubiz L M, Rao C V, Golding I, Chemla Y R 2009 Nat. Methods 6 831

    [6]

    Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673

    [7]

    Grier D G 1997 Curr. Opin. Colloid In. 2 264

    [8]

    Tatarkova S A, Carruthers A E, Dholakia K 2002 Phys. Rev. Lett. 89 283901

    [9]

    Bowman R W, Padgett M J 2013 Rep. Prog. Phys. 76 026401

    [10]

    Mike W, Christina A, Michael E, Cornelia D 2012 Laser Photon. Rev. 7 839

    [11]

    Garcs-Chvez V, McGloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145

    [12]

    Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A 2013 Sci. Rep. 3 1116

    [13]

    Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W 2014 Science 346 1257998

    [14]

    Edward J B, Martin J B, Rimas J, Wilson T 2009 Opt. Lett. 34 1504

    [15]

    Edward J B, Martin J B, Rimas J, Wilson T 2008 Opt. Commun. 281 880

    [16]

    Dunsby C 2008 Opt. Express 16 20306

    [17]

    Edward J B, Christopher W S, Michael M K, Delphine D, Martin J B, Rimas J, Ole P, Tony W 2012 PNAS 109 2919

    [18]

    Curran A, Simon T, Dirk G A L A, Martin J B, Wilson T, Roel P A D 2014 Optica 1 223

    [19]

    Dholakia K, Cizmar T 2011 Nat. Photon. 5 335

    [20]

    Padgett M, Di L D 2011 Lab on Chip 11 1196

    [21]

    Reicherter M, Haist T, Wagemann E U 1999 Opt. Lett. 24 608

    [22]

    Davis J A, Cottrell D M 1994 Opt. Lett. 19 496

    [23]

    Gerchberg R 1972 Optik 35 237

    [24]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169

    [25]

    Ma B, Yao B, Li Z 2013 Appl. Phys. B 110 531

    [26]

    Richards B, Wolf E 1959 Proc. R. Soc. Lond. A 253 358

    [27]

    Florin L, Pralle A, Stelzer K 1998 Appl. Phys. A 66 S75

  • [1]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [2]

    Svoboda K, Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247

    [3]

    Fazal F M, Block S M 2011 Nat. Photon. 5 318

    [4]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [5]

    Min T L, Mears P J, Chubiz L M, Rao C V, Golding I, Chemla Y R 2009 Nat. Methods 6 831

    [6]

    Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673

    [7]

    Grier D G 1997 Curr. Opin. Colloid In. 2 264

    [8]

    Tatarkova S A, Carruthers A E, Dholakia K 2002 Phys. Rev. Lett. 89 283901

    [9]

    Bowman R W, Padgett M J 2013 Rep. Prog. Phys. 76 026401

    [10]

    Mike W, Christina A, Michael E, Cornelia D 2012 Laser Photon. Rev. 7 839

    [11]

    Garcs-Chvez V, McGloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145

    [12]

    Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A 2013 Sci. Rep. 3 1116

    [13]

    Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W 2014 Science 346 1257998

    [14]

    Edward J B, Martin J B, Rimas J, Wilson T 2009 Opt. Lett. 34 1504

    [15]

    Edward J B, Martin J B, Rimas J, Wilson T 2008 Opt. Commun. 281 880

    [16]

    Dunsby C 2008 Opt. Express 16 20306

    [17]

    Edward J B, Christopher W S, Michael M K, Delphine D, Martin J B, Rimas J, Ole P, Tony W 2012 PNAS 109 2919

    [18]

    Curran A, Simon T, Dirk G A L A, Martin J B, Wilson T, Roel P A D 2014 Optica 1 223

    [19]

    Dholakia K, Cizmar T 2011 Nat. Photon. 5 335

    [20]

    Padgett M, Di L D 2011 Lab on Chip 11 1196

    [21]

    Reicherter M, Haist T, Wagemann E U 1999 Opt. Lett. 24 608

    [22]

    Davis J A, Cottrell D M 1994 Opt. Lett. 19 496

    [23]

    Gerchberg R 1972 Optik 35 237

    [24]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169

    [25]

    Ma B, Yao B, Li Z 2013 Appl. Phys. B 110 531

    [26]

    Richards B, Wolf E 1959 Proc. R. Soc. Lond. A 253 358

    [27]

    Florin L, Pralle A, Stelzer K 1998 Appl. Phys. A 66 S75

  • [1] 白靖, 葛城显, 何浪, 刘轩, 吴振森. 椭圆波束对非均匀手征分层粒子的俘获特性研究. 物理学报, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [2] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [3] 范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才. 面向真彩色三维显示的分层角谱算法和Gerchberg-Saxton算法研究. 物理学报, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [4] 安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏. 光学微操纵过程的轴平面显微成像技术. 物理学报, 2017, 66(1): 010702. doi: 10.7498/aps.66.010702
    [5] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [6] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测. 物理学报, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [7] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [8] 张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平. 红外显微观测被俘获吸光性颗粒. 物理学报, 2013, 62(20): 208702. doi: 10.7498/aps.62.208702
    [9] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [10] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [11] 周丹丹, 任煜轩, 刘伟伟, 龚雷, 李银妹. 时间飞行法测量光阱刚度的实验研究 . 物理学报, 2012, 61(22): 228702. doi: 10.7498/aps.61.228702
    [12] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力. 物理学报, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [13] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [14] 杨 浩, 冯国英, 朱启华, 张大勇, 周寿桓. 聚焦光场俘获微球的FDTD分析. 物理学报, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [15] 曾夏辉, 吴逢铁, 刘 岚. 干涉理论对bottle beam的描述. 物理学报, 2007, 56(2): 791-797. doi: 10.7498/aps.56.791
    [16] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [17] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [18] 张艳丽, 赵逸琼, 詹其文, 李永平. 高数值孔径聚焦三维光链的研究. 物理学报, 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [19] 刘春香, 郭红莲, 降雨强, 李兆霖, 程丙英, 张道中. 光镊系统中光放大倍数对测量结果的影响. 物理学报, 2005, 54(3): 1162-1166. doi: 10.7498/aps.54.1162
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  3605
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-16
  • 修回日期:  2018-04-17
  • 刊出日期:  2018-07-05

轴向多光阱微粒捕获与实时直接观测技术

    基金项目: 国家自然科学基金(批准号:61522511,81427802,11474352)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC005)资助的课题.

摘要: 传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)Gerchberg-Saxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回