-
报道了阻挫型磁体Fe3Sn2单晶中宽温域跨室温磁斯格明子的发现及其赛道型微纳器件的初步探索.通过合金化设计和实验,突破晶体取向生长和克服包晶反应两个关键技术难关,制备出了高质量的Fe3Sn2单晶.原位洛伦兹电子显微镜结果表明,在该材料体系中,磁斯格明子具有多种拓扑结构,并可以在一定磁场下相互转化.基于高质量的Fe3Sn2单晶,利用聚焦离子束技术,进一步制备出了600 nm宽并具有磁斯格明子单链排列的赛道性微纳器件.实验结果表明,该单链磁斯格明子具有极高的温度稳定性:单个磁斯格明子的尺寸以及相邻两个磁斯格明子之间的距离可以在室温到630 K宽温区内保持不变.宽温域跨室温磁斯格明子材料Fe3Sn2的发现及单链赛道型微纳器件的成功制备,从材料和器件两个方面推进了磁斯格明子材料的实用化.Nanoscle magnetic skyrmions are topologically protected vortex-like spin textures that have been regarded as a promising candidate for the transport of information in further spintronic applications based on the racetrack memory concept due to their nanoscale dimension, stable particle-like feature, and an ultralow threshold for current-driven motion. Recently, most of the skyrmions are observed in chiral magnetic materials, such as MnSi, FeGe, Co-Mn-Zn, where the Dzyaloshinskii-Moriya interaction is active. However, their overall low thermal stability is one of the major factors hindering the practical applications. In this paper, we report the observation of a new-type magnetic skyrmion with extremerely high temperature stability in the centrosymmetric frustrated magnet Fe3Sn2, and the fabrication of skyrmion-based race-track memory device based on Fe3Sn2 by using focused ion beam. This compound is a rare example of ferromagnetic frustrated magnet that exhibits a high Curie temperature Tc up to 640 K. As the temperature decreases from 640 K to 100 K, it undergoes a spin reorientation during which the easy axis rotates gradually from the c-axis to the ab-plane. The Fe3Sn2 has a layered rhombohedral structure with the alternate stacking of the Sn layer and the Fe-Sn bilayer along the c-axis. By a high-temperature flux method, we grow high-quality Fe3Sn2 single crystal. The in-situ Lorentz transmission electron microscopy (LTEM) observations demonstrate that this compound can host skyrmions at room temperature (RT). In contrast to the skyrmions of the chiral magnets, they possess various spin textures and are transformed from topologically trivial bubbles under a high external magnetic field of 800 mT. By using the FIB technique, we fabricate a geometrically confined nanostripe with a width of 600 nm and thickness of 250 nm. The in-situ LTEM observations demonstrate that a single chain of skyrmions with uniform spin textures can be created at RT. The investigations on the temperature stability of the single skyrmion chain reveal that it shows an extremerely high temperature stability that the size of and the distance between the skyrmions in the chain can keep unchanged at temperatures varying from RT up to a record-high temperature of 630 K. The observation of a highly stable single skyrmion chain in the geometrically confined Fe3Sn2 nanostripe can be attributed to (1) the weak temperaturedependent magnetic anisotropy Ku of the Fe3Sn2 crystal, and (2) the formation of edge states at the boundaries of the nanostripes. The observation of new-type magnetic skymrion with extremerely high temperature stability and the fabrication of skyrmion-based race-track memory devices are very important steps towards the applications in skyrmionbased spintronic devices.
-
Keywords:
- magnetic skyrmions /
- frustrate magnet /
- room temperature and wide temperature window /
- race-track memory device
[1] Skyrme T H R 1962 Nucl. Phys. 31 556
[2] Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 269
[3] Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202
[4] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152
[5] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899
[6] Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915
[7] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602
[8] Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202
[9] Tonomura A, Yu X Z, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673
[10] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
[11] Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203
[12] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
[13] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204
[14] Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403
[15] Lin Y S, Grundy J, Giess E A 1973 Appl. Phys. Lett. 23 485
[16] Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856
[17] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198
[18] Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958
[19] Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887
[20] Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141
[21] Jiang W J, Zhao X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162
[22] Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275
[23] Pereiro M, Yudin D, Chico H, Etz C, Eriksson O, Bergman A 2014 Nat. Commun. 5 4815
[24] Car G L, Malaman B, Roques B J 1978 Physica F 8 323
[25] Fenner L A, Dee A A, Wills A S 2009 J. Phys.: Condens. Matter 21 452202
[26] Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135
[27] Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys.: Condens. Matter 23 112205
[28] Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144
[29] Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958
[30] Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274
[31] Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141
[32] Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Shaoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 566
-
[1] Skyrme T H R 1962 Nucl. Phys. 31 556
[2] Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 269
[3] Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202
[4] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152
[5] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899
[6] Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915
[7] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602
[8] Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202
[9] Tonomura A, Yu X Z, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673
[10] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
[11] Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203
[12] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
[13] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204
[14] Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403
[15] Lin Y S, Grundy J, Giess E A 1973 Appl. Phys. Lett. 23 485
[16] Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856
[17] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198
[18] Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958
[19] Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887
[20] Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141
[21] Jiang W J, Zhao X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162
[22] Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275
[23] Pereiro M, Yudin D, Chico H, Etz C, Eriksson O, Bergman A 2014 Nat. Commun. 5 4815
[24] Car G L, Malaman B, Roques B J 1978 Physica F 8 323
[25] Fenner L A, Dee A A, Wills A S 2009 J. Phys.: Condens. Matter 21 452202
[26] Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135
[27] Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys.: Condens. Matter 23 112205
[28] Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144
[29] Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958
[30] Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274
[31] Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141
[32] Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Shaoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 566
计量
- 文章访问数: 6823
- PDF下载量: 436
- 被引次数: 0