搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽温域跨室温磁斯格明子材料的发现及器件研究

侯志鹏 丁贝 李航 徐桂舟 王文洪 吴光恒

引用本文:
Citation:

宽温域跨室温磁斯格明子材料的发现及器件研究

侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒

Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device

Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng
PDF
导出引用
  • 报道了阻挫型磁体Fe3Sn2单晶中宽温域跨室温磁斯格明子的发现及其赛道型微纳器件的初步探索.通过合金化设计和实验,突破晶体取向生长和克服包晶反应两个关键技术难关,制备出了高质量的Fe3Sn2单晶.原位洛伦兹电子显微镜结果表明,在该材料体系中,磁斯格明子具有多种拓扑结构,并可以在一定磁场下相互转化.基于高质量的Fe3Sn2单晶,利用聚焦离子束技术,进一步制备出了600 nm宽并具有磁斯格明子单链排列的赛道性微纳器件.实验结果表明,该单链磁斯格明子具有极高的温度稳定性:单个磁斯格明子的尺寸以及相邻两个磁斯格明子之间的距离可以在室温到630 K宽温区内保持不变.宽温域跨室温磁斯格明子材料Fe3Sn2的发现及单链赛道型微纳器件的成功制备,从材料和器件两个方面推进了磁斯格明子材料的实用化.
    Nanoscle magnetic skyrmions are topologically protected vortex-like spin textures that have been regarded as a promising candidate for the transport of information in further spintronic applications based on the racetrack memory concept due to their nanoscale dimension, stable particle-like feature, and an ultralow threshold for current-driven motion. Recently, most of the skyrmions are observed in chiral magnetic materials, such as MnSi, FeGe, Co-Mn-Zn, where the Dzyaloshinskii-Moriya interaction is active. However, their overall low thermal stability is one of the major factors hindering the practical applications. In this paper, we report the observation of a new-type magnetic skyrmion with extremerely high temperature stability in the centrosymmetric frustrated magnet Fe3Sn2, and the fabrication of skyrmion-based race-track memory device based on Fe3Sn2 by using focused ion beam. This compound is a rare example of ferromagnetic frustrated magnet that exhibits a high Curie temperature Tc up to 640 K. As the temperature decreases from 640 K to 100 K, it undergoes a spin reorientation during which the easy axis rotates gradually from the c-axis to the ab-plane. The Fe3Sn2 has a layered rhombohedral structure with the alternate stacking of the Sn layer and the Fe-Sn bilayer along the c-axis. By a high-temperature flux method, we grow high-quality Fe3Sn2 single crystal. The in-situ Lorentz transmission electron microscopy (LTEM) observations demonstrate that this compound can host skyrmions at room temperature (RT). In contrast to the skyrmions of the chiral magnets, they possess various spin textures and are transformed from topologically trivial bubbles under a high external magnetic field of 800 mT. By using the FIB technique, we fabricate a geometrically confined nanostripe with a width of 600 nm and thickness of 250 nm. The in-situ LTEM observations demonstrate that a single chain of skyrmions with uniform spin textures can be created at RT. The investigations on the temperature stability of the single skyrmion chain reveal that it shows an extremerely high temperature stability that the size of and the distance between the skyrmions in the chain can keep unchanged at temperatures varying from RT up to a record-high temperature of 630 K. The observation of a highly stable single skyrmion chain in the geometrically confined Fe3Sn2 nanostripe can be attributed to (1) the weak temperaturedependent magnetic anisotropy Ku of the Fe3Sn2 crystal, and (2) the formation of edge states at the boundaries of the nanostripes. The observation of new-type magnetic skymrion with extremerely high temperature stability and the fabrication of skyrmion-based race-track memory devices are very important steps towards the applications in skyrmionbased spintronic devices.
      通信作者: 王文洪, wenhong.wang@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2017YFA0303202)、国家自然科学基金(批准号:11604148)和中国科学院重点研究计划(批准号:KJZD-SW-M01)资助的课题.
      Corresponding author: Wang Wen-Hong, wenhong.wang@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0303202), National Natural Science Foundation of China (Grant No. 11604148), and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-SW-M01).
    [1]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [2]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 269

    [3]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [4]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [5]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [6]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [7]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [8]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [9]

    Tonomura A, Yu X Z, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203

    [12]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [13]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [14]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403

    [15]

    Lin Y S, Grundy J, Giess E A 1973 Appl. Phys. Lett. 23 485

    [16]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [17]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [18]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [19]

    Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887

    [20]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [21]

    Jiang W J, Zhao X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [22]

    Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275

    [23]

    Pereiro M, Yudin D, Chico H, Etz C, Eriksson O, Bergman A 2014 Nat. Commun. 5 4815

    [24]

    Car G L, Malaman B, Roques B J 1978 Physica F 8 323

    [25]

    Fenner L A, Dee A A, Wills A S 2009 J. Phys.: Condens. Matter 21 452202

    [26]

    Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135

    [27]

    Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys.: Condens. Matter 23 112205

    [28]

    Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144

    [29]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [30]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274

    [31]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [32]

    Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Shaoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 566

  • [1]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [2]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 269

    [3]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [4]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [5]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [6]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [7]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [8]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [9]

    Tonomura A, Yu X Z, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203

    [12]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [13]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [14]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403

    [15]

    Lin Y S, Grundy J, Giess E A 1973 Appl. Phys. Lett. 23 485

    [16]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [17]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [18]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [19]

    Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887

    [20]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [21]

    Jiang W J, Zhao X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [22]

    Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275

    [23]

    Pereiro M, Yudin D, Chico H, Etz C, Eriksson O, Bergman A 2014 Nat. Commun. 5 4815

    [24]

    Car G L, Malaman B, Roques B J 1978 Physica F 8 323

    [25]

    Fenner L A, Dee A A, Wills A S 2009 J. Phys.: Condens. Matter 21 452202

    [26]

    Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135

    [27]

    Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys.: Condens. Matter 23 112205

    [28]

    Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144

    [29]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [30]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274

    [31]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [32]

    Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Shaoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 566

  • [1] 张孝悦, 徐华锋, 陈婉娜, 周农, 吴宏伟. 基于定向声源的局域型声学斯格明子模式的选择性激发. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241286
    [2] 郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力. 离子辐照对材料磁性的调控及其应用. 物理学报, 2024, 73(13): 136101. doi: 10.7498/aps.73.20240541
    [3] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [4] 刘益, 钱正洪, 朱建国. 室温磁性斯格明子材料及其应用研究进展. 物理学报, 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [5] 李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰. 薄膜异质结中磁性斯格明子的相关研究. 物理学报, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [6] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [7] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为. 物理学报, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [8] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [9] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理. 物理学报, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [10] 迟晓丹, 胡勇. 中心对称的阻挫磁体中斯格明子直径的调节. 物理学报, 2018, 67(13): 137502. doi: 10.7498/aps.67.20172709
    [11] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [12] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [13] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [14] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [15] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [16] 李子安, 柴可, 张明, 朱春辉, 田焕芳, 杨槐馨. 纳米结构中磁斯格明子的原位电子全息研究. 物理学报, 2018, 67(13): 131203. doi: 10.7498/aps.67.20180426
    [17] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [18] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [19] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [20] 高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元. 静态存储器型现场可编程门阵列总剂量辐射损伤效应研究. 物理学报, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
计量
  • 文章访问数:  7240
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-10
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-07-05

/

返回文章
返回