-
磁性斯格明子是一种具有涡旋状非共线自旋结构的准粒子, 具有独特的拓扑保护特性, 可在极低电流驱动下运动, 有望在信息技术领域获得广泛应用. 从2015年开始, 科学家已经发现了多种室温磁性斯格明子材料, 例如斯格明子多层膜、人工斯格明子材料、β-Mn型单晶材料、中心对称材料(铁氧体、六方Ni2In型)等. 其中多层膜材料由于其制备工艺简单、可通过调节各膜层厚度优化性能、器件集成度高等优点而备受关注. 这些室温磁性斯格明子材料具有涌生电动势、拓扑霍尔效应、斯格明子霍尔效应等特性, 有望用来制备多种新型自旋电子器件, 例如赛道存储器、微波探测器、纳米振荡器等, 其中赛道存储器有望成为下一代非易失性、低能耗和高密度的存储器. 本文首先介绍了磁性斯格明子的基本特性, 然后综述了近年来室温磁性斯格明子材料的研究进展、制备技术及表征方法, 最后简单介绍了用室温磁性斯格明子材料研制赛道存储器、微波探测器等原型器件的研究进展, 展望了室温磁性斯格明子材料的未来发展趋势.
It has been found that many magnetic materials possess the properties arising from skyrmions at room temperature. In addition to the common interaction energy, chiral interaction is also needed to form the skyrmion in magnetic material. There are four chiral magnetic interactions, namely: 1) Dzyaloshinskii-Moriya (DM) interaction; 2) long-ranged magnetic dipolar interaction; 3) four-spin exchange interaction; 4) frustrated exchanged interaction. Through the competition between exchange interaction and chiral interaction, magnetic skyrmion can be realized in magnetic material subject to a certain magnetic field and temperature. The skyrmion generated by the DM interaction features small size (5–100 nm), which is easy to adjust. The skyrmion can be driven by magnetic field or ultralow current density. The magnetic materials with skyrmion can exhibit the properties related to the skyrmion Hall effect, the topological Hall effect and the emergent electrodynamics, which are closely related to the skyrmion number. The existence of skyrmion in the magnetic material can be indirectly measured by topological Hall effect. The movement of skyrmion can be driven by spin polarized current in the direction either parallel or perpendicular to the current direction. The movement of the skyrmion driven by spin polarized currents will continue when the current is present, and will disappear when the current disappears. In previous studies, magnetic skyrmions were realized in a variety of materials. However magnetic skyrmions were found only in very limited types of single crystal materials at room temperature or near room temperature. In recent years, scientists have discovered a variety of magnetic skyrmion materials at room temperature, including film materials (such as multilayer materials, artificial skyrmion materials) and crystal materialssuch as β-Mn-type Co10–x/2Zn10–x/2Mnx, Fe3Sn2. Among all kinds of room temperature magnetic skyrmion materials, the most valuable one is the multilayer film material. The Skyrmion multilayer film has the advantages of small size, adjustable material type, simple preparation, good temperature stability, good device integration,etc. At the same time, skyrmion multilayer film is very easy to optimize by adjusting and constructing a special structure that has the wanted types of materials each with a certain thickness. Artificial skyrmion material obtains artificial skyrmion by constructing a micro-nano structure, therefore the artificial skyrmion with high-temperature stability can be realized by choosing high Curie temperature materials. There are a variety of materials which can realize the skyrmion above room temperature, such as Co9Zn9Mn2 (300–390 K) and Fe3Sn2 (100–400 K). These room temperature materials further widen the temperature application range of skyrmion. The room temperature materials can be prepared or characterized by a variety of techniquesincluding sputtering for fabrication and X-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) for characterization. The discovery of the magnetic skyrmion materials at room temperature not only enriches the research content of materials science, but also makes the skyrmion widely applicable in novel electronic devices (such as racetrack memory, microwave detector, oscillators). Because the skyrmion has the advantages of small size, ultra-low driving current density, and topological stability, it is expected to produce racetrack memory based on the skyrmion with low energy consumption, non-volatile and high density. The MTJ microwave detector based on skyrmion can be achieved with no external magnetic field nor bias current but with low power input (< 1.0 μW); the sensitivity of the microwave detector can reach 2000 V·W–1. The frequency of the oscillator based on skyrmion can be tuned by magnetic field or current, and moreover, the oscillato is very easy to integrate with IC. In this paper, first, the basic characteristic of magnetic skyrmion is introduced; and then room temperature magnetic skyrmion is reviewed; finally the advances of the racetrack memory, microwave detectors and oscillators are introduced, highlighting the development trend of room temperature magnetic skyrmion. -
Keywords:
- magnetic skyrmion /
- room temperature /
- racetrack memory /
- microwave detector
[1] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar
[2] Finocchio G, Büttner F, Tomasello R, Carpentieri M, Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001Google Scholar
[3] Moriya T 1960 Phys. Rev. 120 91Google Scholar
[4] Zhang X, Zhou Y, Song K, Park T, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S 2020 J. Phys.: Condens. Matter. 32 143001Google Scholar
[5] 栗佳 2017 物理 46 281Google Scholar
Li J 2017 Physics 46 281Google Scholar
[6] Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar
[7] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar
[8] Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419Google Scholar
[9] Rössler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar
[10] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar
[11] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar
[12] Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotechnol. 9 337Google Scholar
[13] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar
[14] Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O 2015 Science 349 283Google Scholar
[15] Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704Google Scholar
[16] Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887Google Scholar
[17] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L 2016 Nat. Mater. 13 162Google Scholar
[18] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar
[19] Woo S, Litzius K, Krüger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Kläui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar
[20] Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar
[21] Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar
[22] Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201Google Scholar
[23] Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S, Park S, Kim Y, Kim J, Lee D, Lee O, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Commun. 9 959Google Scholar
[24] Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Ronnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Materials 1 74405Google Scholar
[25] Tokunaga Y, Yu X Z, White J S, Rønnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638Google Scholar
[26] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 物理学报 67 137509Google Scholar
Hou Z, Ding B, Li H, Xu G, Wang W, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar
[27] Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar
[28] Kanazawa N, Seki S, Tokura Y 2017 Adv. Mater. 29 1603227Google Scholar
[29] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tre-tiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D, Kläui M 2017 Nat. Phys. 13 170Google Scholar
[30] Liu Y, Luo Y, Qian Z, Zhu J 2018 Chin. Phys. B 27 127503Google Scholar
[31] Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Switzerland: Springer International Publishing) p35
[32] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar
[33] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar
[34] Ao P, Thouless D J 1993 Phys. Rev. Lett. 70 2158Google Scholar
[35] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar
[36] Seki S, Tokura Y 2012 Science 336 198Google Scholar
[37] Okamura Y, Kagawa F, Seki S, Tokura Y 2016 Nat. Commun. 7 12669Google Scholar
[38] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636Google Scholar
[39] Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S 2013 Science 340 1076Google Scholar
[40] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar
[41] Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237Google Scholar
[42] Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856Google Scholar
[43] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar
[44] Cao A, Zhang X, Koopmans B, Peng S, Zhang Y, Wang Z, Yan S, Yang H, Zhao W 2018 Nanoscale 10 12062Google Scholar
[45] Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar
[46] Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2018 Nat. Commun. 9 2712Google Scholar
[47] Woo S, Song K M, Zhang X, Ezawa M, Zhou Y, Liu X, Weigand M, Finizio S, Raabe J, Park M, Lee K, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Electron. 1 288Google Scholar
[48] White J S, Prša K, Huang P, Omrani A A, živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J, Rønnow H M 2014 Phys. Rev. Lett. 113 107203Google Scholar
[49] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar
[50] Chen G, Mascaraque A, Diaye A, Schmid A 2015 Appl. Phys. Lett. 106 242404Google Scholar
[51] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boeni P 2009 Phys. Rev. Lett. 102 186602Google Scholar
[52] Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron. 2 182Google Scholar
[53] Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar
[54] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Dieny B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar
[55] Zhang X C, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293Google Scholar
[56] Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H 2018 Nano Lett. 18 1274Google Scholar
[57] Müller J 2017 New J. Phys. 19 25002Google Scholar
[58] Leonov A O, Loudon J C, Bogdanov A N 2016 Appl. Phys. Lett. 109 172404Google Scholar
[59] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 物理学报 67 137505Google Scholar
Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar
[60] Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y 2013 Nat. Commun. 4 2391Google Scholar
[61] Seki S, Mochizuki M 2013 Phys. Rev. B 87 134403Google Scholar
[62] Finocchio G, Ricci M, Tomasello R, Giordano A, Lanuzza M, Puliafito V, Burrascano P, Azzerboni B, Carpentieri M 2015 Appl. Phys. Lett. 107 262401Google Scholar
[63] Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G, Zeng Z 2016 Nat. Commun. 7 11259Google Scholar
[64] Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C, Xue D 2015 New J. Phys. 17 23061Google Scholar
[65] Zeng Z, Finocchio G, Jiang H 2013 Nanoscale 5 2219Google Scholar
[66] Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar
[67] Liu R H, Lim W L, Urazhdin S 2015 Phys. Rev. Lett. 114 137201Google Scholar
-
图 1 不同自旋结构的斯格明子示意图 (a) 奈尔型斯格明子; (b) 布洛赫型斯格明子; (c) 奈尔型斯格明子; (d)布洛赫型斯格明子; (e)−(h) 反斯格明子; (i)单位磁矩方位示意图
Fig. 1. The spin structure diagram of different skyrmions: (a)Néel type skyrmion; (b) Bloch type skyrmion; (c) Néel type skyrmion; (d) Bloch type skyrmion; (e)−(h) anti-skyrmion; (i) the altitude and azimuth diagram of unit magnetic moment.
图 3 (a) Ta/CoFeB/TaOx三层膜桥式结构中斯格明子的形成[14]; (b) 在Pt/Co/MgO三层膜正方型结构中的斯格明子[21]; (c)在Pt和Ir层中Co层中DM作用的的叠加[18]; (d)在脉冲10 V电场下, 迷宫磁畴转化为斯格明子[19]; (e) 通过磁光克尔显微镜在薄膜Ta/CoFeB/TaOx直接观察到斯格明子霍尔效应[17]; (f)斯格明子霍尔角与电流密度的函数关系[17]
Fig. 3. (a) Skyrmion bubbles realized at the exit of a constriction of Ta/CoFeB/TaOx trilayer[14]; (b) skyrmion realized in a square of Pt/Co/MgO trilayer[21]; (c) additive DM for Co between Pt and Ir[18];(d) with the electric field pulse, the labyrinth domain is transformed into the skyrmion[19] (e) skyrmion Hall effect is clearly observed in successive Kerr microscopy images of a Ta/CoFeB/TaOx trilayer[17]; (f) phase diagram of the skyrmion Hall angle as a function of current density[17].
表 2 低温磁性斯格明子材料
Table 2. Magnetic skyrmions materials at low temperature
表 3 室温斯格明子材料
Table 3. Magnetic skyrmions materials at room temperature.
材料类型 典型材料 制备方法 斯格明子温
度范围/K斯格明子的
尺寸/nm薄膜材料 多层膜材料 Ta/CoFeB/TaOx[17]
(Ir/Co/Pt)10[18]
Pt/Co/Ta, Pt/CoFeB/MgO[19]直流溅射 室温 1000
30—90
100反铁磁/铁磁材料薄膜 [Pt/Gd25Fe65.6Co9.4/MgO]n[23] 直流溅射 室温 180 人工斯格明子材料 Co/Ni/Cu(001)[15]
Co/[Co/Pd]n, Co/Pd[40]直流溅射 室温 1000 单晶材料 手性对称材料 Co8Zn8Mn4[41]
Co8Zn9Mn3[25]
(β-Mn结构)布里奇曼法 284—300
311—320> 125 中心对
称材料铁氧体 Ba(Fe1–xScxMg0.05)12O19[42] 布里奇曼法 室温 200 金属间化合物 MnNiGa[16]、 布里奇曼法 100—340 90 阻挫型 Fe3Sn2[26] 聚焦离子束技术(FIB) 100—340 300 表 4 室温薄膜材料中斯格明子在电流驱动下运动
Table 4. The motion of skyrmion in room temperature films driven by current.
表 5 斯格明子材料常见制备方式
Table 5. Common preparation method of skyrmion materials.
方式 材料类型 制备时间 优点 直流溅射 薄膜材料 3 h 成本低, 适合工业量产 分子束外延 薄膜材料 > 1 d 薄膜平整度高 布里奇曼法 单晶材料 1 m 制作大尺寸器件 -
[1] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar
[2] Finocchio G, Büttner F, Tomasello R, Carpentieri M, Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001Google Scholar
[3] Moriya T 1960 Phys. Rev. 120 91Google Scholar
[4] Zhang X, Zhou Y, Song K, Park T, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S 2020 J. Phys.: Condens. Matter. 32 143001Google Scholar
[5] 栗佳 2017 物理 46 281Google Scholar
Li J 2017 Physics 46 281Google Scholar
[6] Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar
[7] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar
[8] Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419Google Scholar
[9] Rössler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar
[10] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar
[11] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar
[12] Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotechnol. 9 337Google Scholar
[13] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar
[14] Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O 2015 Science 349 283Google Scholar
[15] Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704Google Scholar
[16] Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887Google Scholar
[17] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L 2016 Nat. Mater. 13 162Google Scholar
[18] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar
[19] Woo S, Litzius K, Krüger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Kläui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar
[20] Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar
[21] Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar
[22] Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201Google Scholar
[23] Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S, Park S, Kim Y, Kim J, Lee D, Lee O, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Commun. 9 959Google Scholar
[24] Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Ronnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Materials 1 74405Google Scholar
[25] Tokunaga Y, Yu X Z, White J S, Rønnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638Google Scholar
[26] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 物理学报 67 137509Google Scholar
Hou Z, Ding B, Li H, Xu G, Wang W, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar
[27] Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar
[28] Kanazawa N, Seki S, Tokura Y 2017 Adv. Mater. 29 1603227Google Scholar
[29] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tre-tiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D, Kläui M 2017 Nat. Phys. 13 170Google Scholar
[30] Liu Y, Luo Y, Qian Z, Zhu J 2018 Chin. Phys. B 27 127503Google Scholar
[31] Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Switzerland: Springer International Publishing) p35
[32] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar
[33] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar
[34] Ao P, Thouless D J 1993 Phys. Rev. Lett. 70 2158Google Scholar
[35] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar
[36] Seki S, Tokura Y 2012 Science 336 198Google Scholar
[37] Okamura Y, Kagawa F, Seki S, Tokura Y 2016 Nat. Commun. 7 12669Google Scholar
[38] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636Google Scholar
[39] Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S 2013 Science 340 1076Google Scholar
[40] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar
[41] Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237Google Scholar
[42] Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856Google Scholar
[43] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar
[44] Cao A, Zhang X, Koopmans B, Peng S, Zhang Y, Wang Z, Yan S, Yang H, Zhao W 2018 Nanoscale 10 12062Google Scholar
[45] Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar
[46] Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2018 Nat. Commun. 9 2712Google Scholar
[47] Woo S, Song K M, Zhang X, Ezawa M, Zhou Y, Liu X, Weigand M, Finizio S, Raabe J, Park M, Lee K, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Electron. 1 288Google Scholar
[48] White J S, Prša K, Huang P, Omrani A A, živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J, Rønnow H M 2014 Phys. Rev. Lett. 113 107203Google Scholar
[49] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar
[50] Chen G, Mascaraque A, Diaye A, Schmid A 2015 Appl. Phys. Lett. 106 242404Google Scholar
[51] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boeni P 2009 Phys. Rev. Lett. 102 186602Google Scholar
[52] Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron. 2 182Google Scholar
[53] Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar
[54] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Dieny B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar
[55] Zhang X C, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293Google Scholar
[56] Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H 2018 Nano Lett. 18 1274Google Scholar
[57] Müller J 2017 New J. Phys. 19 25002Google Scholar
[58] Leonov A O, Loudon J C, Bogdanov A N 2016 Appl. Phys. Lett. 109 172404Google Scholar
[59] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 物理学报 67 137505Google Scholar
Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar
[60] Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y 2013 Nat. Commun. 4 2391Google Scholar
[61] Seki S, Mochizuki M 2013 Phys. Rev. B 87 134403Google Scholar
[62] Finocchio G, Ricci M, Tomasello R, Giordano A, Lanuzza M, Puliafito V, Burrascano P, Azzerboni B, Carpentieri M 2015 Appl. Phys. Lett. 107 262401Google Scholar
[63] Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G, Zeng Z 2016 Nat. Commun. 7 11259Google Scholar
[64] Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C, Xue D 2015 New J. Phys. 17 23061Google Scholar
[65] Zeng Z, Finocchio G, Jiang H 2013 Nanoscale 5 2219Google Scholar
[66] Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar
[67] Liu R H, Lim W L, Urazhdin S 2015 Phys. Rev. Lett. 114 137201Google Scholar
计量
- 文章访问数: 15237
- PDF下载量: 785
- 被引次数: 0