搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于符号回归方法探索磁性斯格明子结构近似解析式

史猛 王伟伟 杜海峰

引用本文:
Citation:

基于符号回归方法探索磁性斯格明子结构近似解析式

史猛, 王伟伟, 杜海峰
cstr: 32037.14.aps.73.20231473

Exploring approximate analytical expression for magnetic skyrmion structure based on symbolic regression method

Shi Meng, Wang Wei-Wei, Du Hai-Feng
cstr: 32037.14.aps.73.20231473
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 磁性斯格明子是一种非平庸的拓扑磁结构, 它能够在具有Dzyaloshinskii-Moriya (DM)相互作用的手性磁体中稳定存在, 其静态以及动态特性与其结构特征息息相关. 然而, 一般情况下斯格明子结构解析式并不存在. 因此, 许多研究者给出了近似解析式. 本文介绍了使用符号回归算法探索磁性斯格明子结构解析式的新方法, 在考虑DM相互作用和外部磁场对磁性斯格明子结构的影响下, 使用符号回归算法得到了两个较为合适的近似解析式, 其适用范围与占主导地位的相互作用有关. 研究结果验证了符号回归算法在探索磁性斯格明子结构解析式的强大能力, 为磁结构的解析式探索提供了新思路.
    Magnetic skyrmion is a kind of nontrivial topological magnetic structure, which can exist stably in chiral magnet with Dzyaloshinskii-Moriya (DM) interaction, and its static and dynamic properties are closely related to its structural characteristics. However, there are no general analytical expressions for skyrmion profiles. Therefore, many researchers have provided approximate solutions. In this paper, a new approach to exploring magnetic skyrmion structures is introduced by using a symbolic regression approach. Considering the influence of DM interaction and external magnetic field on magnetic skyrmion structure, two suitable approximate expressions are obtained through symbolic regression algorithms. The applicability of these expressions depends on the dominant interaction. The research results in this work validate the powerful capability of symbolic regression algorithms in exploring the magnetic skyrmion profiles. So, the present study provides a new method for finding the analytical expressions for magnetic structure.
      通信作者: 杜海峰, duhf@hmfl.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1403603)、中国科学院战略性先导科技专项(批准号: XDB33030100)、国家自然科学基金(批准号: 12241406)、国家杰出青年科学基金(批准号: 52325105)、中国科学院装备发展项目(批准号: YJKYYQ20180012)和中国科学院青年基础研究项目(批准号: YSBR-084)资助的课题.
      Corresponding author: Du Hai-Feng, duhf@hmfl.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403603), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB33030100), the National Natural Science Foundation of China (Grant No. 12241406), the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 52325105), the Equipment Development Project of Chinese Academy of Sciences, China (Grant No. YJKYYQ20180012), and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences, China (Grant No. YSBR-084).
    [1]

    Abanov Ar, Pokrovsky V L 1998 Phys. Rev. B 58 R8889Google Scholar

    [2]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [3]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Bluegel S 2011 Nat. Phys. 7 713Google Scholar

    [4]

    Wei W S, He Z D, Qu Z, Du H F 2021 Rare Met. 40 3076Google Scholar

    [5]

    Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y, Zhao G P 2022 Rare Met. 41 2200Google Scholar

    [6]

    Braun H 1994 Phys. Rev. B 50 16485Google Scholar

    [7]

    Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R 2015 Phys. Rev. Lett. 114 177203Google Scholar

    [8]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422Google Scholar

    [9]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [10]

    Buttner F, Lemesh I, Beach G S D 2018 Sci. Rep. 8 4464Google Scholar

    [11]

    Komineas S, Melcher C, Venakides S 2020 Nonlinearity 33 3395Google Scholar

    [12]

    Komineas S, Melcher C, Venakides S 2021 Physica D 418 132842Google Scholar

    [13]

    Komineas S, Melcher C, Venakides S 2023 New J. Phys. 25 023013Google Scholar

    [14]

    Udrescu S M, Tegmark M 2020 Sci. Adv. 6 eaay2631Google Scholar

    [15]

    Kim S, Lu P Y, Mukherjee S, Gilbert M, Jing L, Ceperic V, Soljacic M 2021 IEEE Trans. Neural Networks Learn. Syst. 32 4166Google Scholar

    [16]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [17]

    Sun S, Ouyang R, Zhang B, Zhang T Y 2019 MRS Bull. 44 559Google Scholar

    [18]

    Koksbang S M 2023 Phys. Rev. D 107 103522Google Scholar

    [19]

    Hernandez A, Balasubramanian A, Yuan F, Mason S A M, Mueller T 2019 NPJ Comput. Mater. 5 112Google Scholar

    [20]

    Baldi P, Sadowski P, Whiteson D 2014 Nat. Commun. 5 4308Google Scholar

    [21]

    Carleo G, Troyer M 2017 Science 355 602Google Scholar

    [22]

    Zhao G P, Zhao L, Shen L C, Zou J, Qiu L 2019 Chin. Phys. B 28 77505Google Scholar

    [23]

    Jones A 1993 Nature 363 222Google Scholar

    [24]

    Cranmer M 2023 arXiv: 10.48550/arXiv.2305.01582 [astro-ph.IM

    [25]

    Wu H, Hu X, Jing K, Wang X R 2021 Commun. Phys. UK 4 1Google Scholar

  • 图 1  磁性斯格明子结构 (a) 布洛赫型斯格明子; (b) 奈尔型斯格明子; (c)单磁畴壁

    Fig. 1.  Magnetic skyrmion structures: (a) Bloch-type skyrmion; (b) Néel-type skyrmion; (c) magnetic domain wall.

    图 2  符号回归算法中二叉树结构与遗传操作示意图 (a) 用二叉树表示公式形式; (b) 复制操作; (c) 交叉操作; (d) 变异操作

    Fig. 2.  Binary tree structure and schematic diagrams of genetic operations in symbolic regression: (a) Representing the formula in binary tree form; (b) copy operation; (c) crossover operation; (d) mutation operation.

    图 3  符号回归方法流程图

    Fig. 3.  Flowchart of the symbolic regression.

    图 4  不同AK值下, (8)式拟合结果与一维单磁畴壁结构模拟数据比较图 (a) A = 1×10–12 J/m, K = 1×103 J/m3; (b) A = 5×10–12 J/m, K = 2×103 J/m3; (c) A = 13×10–12 J/m, K = 3×103 J/m3

    Fig. 4.  Comparison between the fitting results of Eq. (8) and simulation data of one-dimensional magnetic domain wall under various values of A and K: (a) A = 1×10–12 J/m, K = 1×103 J/m3; (b) A = 5×10–12 J/m, K = 2×103 J/m3; (c) A = 13×10–12 J/m, K = 3×103 J/m3.

    图 5  $ {\lambda }^{2}/h=0.01 $ 时的帕累托最优 (a) (10a)式; (b) (10b)式

    Fig. 5.  Pareto optimum when $ {\lambda }^{2}/h=0.01 $: (a) Eq. (10a); (b) Eq. (10b).

    图 6  不同$ {\lambda }^{2}/h $大小下(10a)式与 (10b)式的拟合情况 (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9. (e) 不同$ {\lambda }^{2}/h $大小下, 更高适应度解析式统计图(1代表(10a)式, 2代表(10b)式)

    Fig. 6.  Fitting results of equations (10a) and (10b) under various $ {\lambda }^{2}/h $ values: (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9$ . $ (e) Statistical chart of equations with higher fitness under various $ {\lambda }^{2}/h $ values (1 represents equation (10a), 2 represents equation (10b)).

    图 7  不同$ {\lambda }^{2}/h $大小下 (11a)式或(11b)式的拟合情况 (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9

    Fig. 7.  Fitting results of Eq. (11a) or Eq. (11b) under various $ {\lambda }^{2}/h $ values: (a) 0.01; (b) 0.16; (c) 0.167; (d) 0.9.

    图 8  不同$ {\lambda }^{2}/h $大小下, (11a)式或(11b)式的拟合情况 (a) 0.009; (b) 0.015; (c) 0.139; (d) 0.192; (e) 0.227; (f) 0.769

    Fig. 8.  Fitting results of Eq. (11a) or (11b) under various $ {\lambda }^{2}/h $ values: (a) 0.009; (b) 0.015; (c) 0.139; (d) 0.192; (e) 0.227; (f) 0.769

  • [1]

    Abanov Ar, Pokrovsky V L 1998 Phys. Rev. B 58 R8889Google Scholar

    [2]

    Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [3]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Bluegel S 2011 Nat. Phys. 7 713Google Scholar

    [4]

    Wei W S, He Z D, Qu Z, Du H F 2021 Rare Met. 40 3076Google Scholar

    [5]

    Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y, Zhao G P 2022 Rare Met. 41 2200Google Scholar

    [6]

    Braun H 1994 Phys. Rev. B 50 16485Google Scholar

    [7]

    Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R 2015 Phys. Rev. Lett. 114 177203Google Scholar

    [8]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422Google Scholar

    [9]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [10]

    Buttner F, Lemesh I, Beach G S D 2018 Sci. Rep. 8 4464Google Scholar

    [11]

    Komineas S, Melcher C, Venakides S 2020 Nonlinearity 33 3395Google Scholar

    [12]

    Komineas S, Melcher C, Venakides S 2021 Physica D 418 132842Google Scholar

    [13]

    Komineas S, Melcher C, Venakides S 2023 New J. Phys. 25 023013Google Scholar

    [14]

    Udrescu S M, Tegmark M 2020 Sci. Adv. 6 eaay2631Google Scholar

    [15]

    Kim S, Lu P Y, Mukherjee S, Gilbert M, Jing L, Ceperic V, Soljacic M 2021 IEEE Trans. Neural Networks Learn. Syst. 32 4166Google Scholar

    [16]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [17]

    Sun S, Ouyang R, Zhang B, Zhang T Y 2019 MRS Bull. 44 559Google Scholar

    [18]

    Koksbang S M 2023 Phys. Rev. D 107 103522Google Scholar

    [19]

    Hernandez A, Balasubramanian A, Yuan F, Mason S A M, Mueller T 2019 NPJ Comput. Mater. 5 112Google Scholar

    [20]

    Baldi P, Sadowski P, Whiteson D 2014 Nat. Commun. 5 4308Google Scholar

    [21]

    Carleo G, Troyer M 2017 Science 355 602Google Scholar

    [22]

    Zhao G P, Zhao L, Shen L C, Zou J, Qiu L 2019 Chin. Phys. B 28 77505Google Scholar

    [23]

    Jones A 1993 Nature 363 222Google Scholar

    [24]

    Cranmer M 2023 arXiv: 10.48550/arXiv.2305.01582 [astro-ph.IM

    [25]

    Wu H, Hu X, Jing K, Wang X R 2021 Commun. Phys. UK 4 1Google Scholar

计量
  • 文章访问数:  3647
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 修回日期:  2023-11-15
  • 上网日期:  2023-11-24
  • 刊出日期:  2024-01-05

/

返回文章
返回