搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间散斑场捕获大量吸光性颗粒及其红外显微观测

张志刚 刘丰瑞 张青川 程腾 伍小平

引用本文:
Citation:

空间散斑场捕获大量吸光性颗粒及其红外显微观测

张志刚, 刘丰瑞, 张青川, 程腾, 伍小平

Trapping of multiple particles by space speckle field and infrared microscopy

Zhang Zhi-Gang, Liu Feng-Rui, Zhang Qing-Chuan, Cheng Teng, Wu Xiao-Ping
PDF
导出引用
  • 光镊技术被广泛应用于捕获和操纵微纳米尺寸颗粒,主要包括捕获水中透明性颗粒和空气中吸光性颗粒两种类型. 本文用激光束照射毛玻璃散射片,透射光经透镜会聚后在透镜的像平面附近产生了主观散斑场. 该散斑场为空间分布,包含大量的亮斑和暗斑. 大量由亮斑包围的暗斑如同一个个空间能量陷阱,被用来捕获大量的吸光性墨粉颗粒,被捕获颗粒的尺寸约2–8 μm,密度约1–2 g/cm3. 采用红外显微镜拍摄到空间散斑场捕获颗粒的红外像,红外图像显示被捕获颗粒吸光后温度升高,证实了空间散斑场捕获吸光性颗粒的机理为光泳力原理.
    Optical tweezer technology is widely used in trapping and manipulating micro-and nano-sized particles, mainly including the trapping of transparent particles in water and the trapping of absorbing particles in air. In this paper, a frosted glass diffuser is irradiated by laser beam, and a subjective speckle field is generated in the image plane of a lens after the laser has transmitted the lens. The speckle field is spatially distributed, and contains multiple bright spots and dark spots. A large number of dark spots surrounded by bright spots are spatial energy traps, and can be used to trap a large number of absorbing particles. The sizes and densities of trapped particles are about 2–8 μm and 1–2 g/cm3. In addition, an infrared microscope is used to record the infrared images of the particles trapped by the speckle field, and the infrared images show that the temperature of trapped particles rises by absorbing the light energy, which verifies that the mechanism of trapping absorbing particles by speckle field is photophoretic force.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB302105)、国家自然科学基金(批准号:11332010,11102201)、中央高校基本科研业务费专项资金(批准号:WK2090050017)和中国科学院科研装备研制项目(批准号:YZ201265)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB302105), the National Natural Science Foundation of China (Grant Nos. 11332010, 11102201), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. WK2090050017), and the Instrument Developing Project of Chinese Academy of Science (Grant No. YZ201265).
    [1]

    Grier D G 2003 Nature 424 810

    [2]

    MacDonald M P, Spalding G C, Dholakla K 2003 Nature 426 421

    [3]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nature Photon. 2 675

    [4]

    Brzobohatý, Karásek V, Šiler M, Chvátal L, Čižmár T, Zemánek P 2013 Nature Photon. 7 123

    [5]

    Horstmann M, Probst K, Fallnich C 2012 Lab. on a Chip. 12 295

    [6]

    Li X C, Sun X D 2010 Chin. Phys. B 19 119401

    [7]

    Chen H, Guo Y, Chen Z, Hao J, Xu J, Wang H T, Ding J 2013 J. Opt. 15 035401

    [8]

    Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 1491

    [9]

    Shvedov V G, Rode A V, Izdebskaya Y V, Desyatnikov A S, Krolikowski W, Kivshar Y S 2010 Phys. Rev. Lett. 105 118103

    [10]

    Li Q, Feng W L, Hu X M, Cao Q, Sha D G, Lin J M 2008 Chin. Phys. B 17 726

    [11]

    Ashkin A 1970 Phys. Rev. Lett. 24 156

    [12]

    Shvedov V G, Desyatnikov A S, Rode A V, Krolikowski W, Kivshar Y S 2009 Opt. Express 17 5743

    [13]

    Hu G J, Li J, Long Q, Tao T, Zhang G X, Wu X P 2011 Acta Phys. Sin. 60 030301 (in Chinese) [胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平 2011 物理学报 60 030301]

    [14]

    Jiang Y Q, Guo H L, Liu C X, Li Z L, Cheng B Y, Zhang D Z, Jia S T 2004 Acta Phys. Sin. 53 1721 (in Chinese) [降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂 2004 物理学报 53 1721]

    [15]

    Xu S H, Li Y M, Lou L R 2008 Chin. Phys. B 15 1391

    [16]

    Ren H L, Ding P F, Li X Y 2012 Acta Phys. Sin. 61 210701 (in Chinese) [任洪亮, 丁攀峰, 李小燕 2012 物理学报 61 210701]

    [17]

    Li B J, Xin H B, Zhang Y, Lei H X 2011 Acta Opt. Sin. 31 0900126 (in Chinese) [李宝军, 辛洪宝, 张垚, 雷宏香 2011 光学学报 31 0900126]

    [18]

    Shvedov V G, Rode A V, Izdebskaya Y V, Desyatnikov A S, Krolikowski W, Kivshar Y S 2010 Opt. Express 18 3137

    [19]

    Zhang Q C, Zhang Z G, Liu F R, Liu S, Wu X P 2012 Chinese Patent 201210275567.0 (2012-08-03) (in Chinese) [张青川, 张志刚, 刘丰瑞, 刘爽, 伍小平 2012 中国专利 申请号: 201210275567. 0 [2012-08-03]]

    [20]

    Zhang Q C, Zhang Z G, Liu F R, Zhang Y, Liu S, Wu X P 2012 Chinese Patent 201210366305 (2012-09-27) (in Chinese) [张青川, 张志刚, 刘丰瑞, 张勇, 刘爽, 伍小平 2012 中国专利 申请号: 201210366305.5 [2012-09-27]]

    [21]

    Wang K F, Gao M H 2010 Speckle Metrology (Beijing: Beijing Institute of Technology Press) p1 (in Chinese) [王开福, 高明慧 2010 散斑计量 (北京: 北京理工大学出版社) 第1页]

    [22]

    Goodman J W (Translated by Cao Q Z, Chen J B) 2009 Speckle Phenomena in Optics: Theory and Application (Beijing: Science Press) pp69–71 (in Chinese) [古德曼 J W 著 (曹其智, 陈家壁译) 2009 光学中的散斑现象: 理论与应用 (北京: 科学出版社) 第69–71页]

    [23]

    Lewittes M, Arnold S, Oster G 1982 Appl. Phys. Lett. 40 455

    [24]

    Zhang Z G, Cheng T, Zhang Q C, Mao L, Gao J, Wu X P 2013 J. Appl. Phys. 114 093106

    [25]

    Zhang Z G, Mao L, Cheng T, Zhang Q C 2013 J. Infrared Millim. Waves 32 331 (in Chinese) [张志刚, 毛亮, 程腾, 张青川 2013 红外与毫米波学报 32 331]

    [26]

    Cheng T, Zhang Q C, Chen D P, Wu X P, Shi H T, Gao J 2009 Acta Phys. Sin. 58 852 (in Chinese) [程腾, 张青川, 陈大鹏, 伍小平, 史海涛, 高杰 2009 物理学报 58 852]

    [27]

    Zhang Z G, Liu F R, Zhang Q C, Cheng T, Gao J, Wu X P 2013 Acta Phys. Sin. 62 208702 (in Chinese) [张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平 2013 物理学报 62 208702]

  • [1]

    Grier D G 2003 Nature 424 810

    [2]

    MacDonald M P, Spalding G C, Dholakla K 2003 Nature 426 421

    [3]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nature Photon. 2 675

    [4]

    Brzobohatý, Karásek V, Šiler M, Chvátal L, Čižmár T, Zemánek P 2013 Nature Photon. 7 123

    [5]

    Horstmann M, Probst K, Fallnich C 2012 Lab. on a Chip. 12 295

    [6]

    Li X C, Sun X D 2010 Chin. Phys. B 19 119401

    [7]

    Chen H, Guo Y, Chen Z, Hao J, Xu J, Wang H T, Ding J 2013 J. Opt. 15 035401

    [8]

    Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 1491

    [9]

    Shvedov V G, Rode A V, Izdebskaya Y V, Desyatnikov A S, Krolikowski W, Kivshar Y S 2010 Phys. Rev. Lett. 105 118103

    [10]

    Li Q, Feng W L, Hu X M, Cao Q, Sha D G, Lin J M 2008 Chin. Phys. B 17 726

    [11]

    Ashkin A 1970 Phys. Rev. Lett. 24 156

    [12]

    Shvedov V G, Desyatnikov A S, Rode A V, Krolikowski W, Kivshar Y S 2009 Opt. Express 17 5743

    [13]

    Hu G J, Li J, Long Q, Tao T, Zhang G X, Wu X P 2011 Acta Phys. Sin. 60 030301 (in Chinese) [胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平 2011 物理学报 60 030301]

    [14]

    Jiang Y Q, Guo H L, Liu C X, Li Z L, Cheng B Y, Zhang D Z, Jia S T 2004 Acta Phys. Sin. 53 1721 (in Chinese) [降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂 2004 物理学报 53 1721]

    [15]

    Xu S H, Li Y M, Lou L R 2008 Chin. Phys. B 15 1391

    [16]

    Ren H L, Ding P F, Li X Y 2012 Acta Phys. Sin. 61 210701 (in Chinese) [任洪亮, 丁攀峰, 李小燕 2012 物理学报 61 210701]

    [17]

    Li B J, Xin H B, Zhang Y, Lei H X 2011 Acta Opt. Sin. 31 0900126 (in Chinese) [李宝军, 辛洪宝, 张垚, 雷宏香 2011 光学学报 31 0900126]

    [18]

    Shvedov V G, Rode A V, Izdebskaya Y V, Desyatnikov A S, Krolikowski W, Kivshar Y S 2010 Opt. Express 18 3137

    [19]

    Zhang Q C, Zhang Z G, Liu F R, Liu S, Wu X P 2012 Chinese Patent 201210275567.0 (2012-08-03) (in Chinese) [张青川, 张志刚, 刘丰瑞, 刘爽, 伍小平 2012 中国专利 申请号: 201210275567. 0 [2012-08-03]]

    [20]

    Zhang Q C, Zhang Z G, Liu F R, Zhang Y, Liu S, Wu X P 2012 Chinese Patent 201210366305 (2012-09-27) (in Chinese) [张青川, 张志刚, 刘丰瑞, 张勇, 刘爽, 伍小平 2012 中国专利 申请号: 201210366305.5 [2012-09-27]]

    [21]

    Wang K F, Gao M H 2010 Speckle Metrology (Beijing: Beijing Institute of Technology Press) p1 (in Chinese) [王开福, 高明慧 2010 散斑计量 (北京: 北京理工大学出版社) 第1页]

    [22]

    Goodman J W (Translated by Cao Q Z, Chen J B) 2009 Speckle Phenomena in Optics: Theory and Application (Beijing: Science Press) pp69–71 (in Chinese) [古德曼 J W 著 (曹其智, 陈家壁译) 2009 光学中的散斑现象: 理论与应用 (北京: 科学出版社) 第69–71页]

    [23]

    Lewittes M, Arnold S, Oster G 1982 Appl. Phys. Lett. 40 455

    [24]

    Zhang Z G, Cheng T, Zhang Q C, Mao L, Gao J, Wu X P 2013 J. Appl. Phys. 114 093106

    [25]

    Zhang Z G, Mao L, Cheng T, Zhang Q C 2013 J. Infrared Millim. Waves 32 331 (in Chinese) [张志刚, 毛亮, 程腾, 张青川 2013 红外与毫米波学报 32 331]

    [26]

    Cheng T, Zhang Q C, Chen D P, Wu X P, Shi H T, Gao J 2009 Acta Phys. Sin. 58 852 (in Chinese) [程腾, 张青川, 陈大鹏, 伍小平, 史海涛, 高杰 2009 物理学报 58 852]

    [27]

    Zhang Z G, Liu F R, Zhang Q C, Cheng T, Gao J, Wu X P 2013 Acta Phys. Sin. 62 208702 (in Chinese) [张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平 2013 物理学报 62 208702]

计量
  • 文章访问数:  3535
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-16
  • 修回日期:  2013-10-13
  • 刊出日期:  2014-01-05

空间散斑场捕获大量吸光性颗粒及其红外显微观测

  • 1. 中国科学技术大学近代力学系, 中国科学院材料力学行为与设计重点实验室, 合肥 230027
    基金项目: 国家重点基础研究发展计划(批准号:2011CB302105)、国家自然科学基金(批准号:11332010,11102201)、中央高校基本科研业务费专项资金(批准号:WK2090050017)和中国科学院科研装备研制项目(批准号:YZ201265)资助的课题.

摘要: 光镊技术被广泛应用于捕获和操纵微纳米尺寸颗粒,主要包括捕获水中透明性颗粒和空气中吸光性颗粒两种类型. 本文用激光束照射毛玻璃散射片,透射光经透镜会聚后在透镜的像平面附近产生了主观散斑场. 该散斑场为空间分布,包含大量的亮斑和暗斑. 大量由亮斑包围的暗斑如同一个个空间能量陷阱,被用来捕获大量的吸光性墨粉颗粒,被捕获颗粒的尺寸约2–8 μm,密度约1–2 g/cm3. 采用红外显微镜拍摄到空间散斑场捕获颗粒的红外像,红外图像显示被捕获颗粒吸光后温度升高,证实了空间散斑场捕获吸光性颗粒的机理为光泳力原理.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回