搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性晶体产生的空心光束中大尺寸粒子囚禁与导引

宁效龙 王志章 裴春莹 尹亚玲

引用本文:
Citation:

非线性晶体产生的空心光束中大尺寸粒子囚禁与导引

宁效龙, 王志章, 裴春莹, 尹亚玲

Trapping and guiding of large-size particles in hollow beams produced by nonlinear crystals

Ning Xiao-Long, Wang Zhi-Zhang, Pei Chun-Ying, Yin Ya-Ling
PDF
导出引用
  • 提出了一种基于非线性ZnSe晶体产生的空心光束与光泳力的大尺寸粒子二维囚禁与一维导引、三维囚禁方案.理论上分析并计算了单个非线性ZnSe晶体产生的空心光束内粒子受到的横向与纵向光泳力,纵向光泳力的大小同粒子尺寸与光束尺寸比例的四次方成正比,与空心光束功率成正比,方向与光束传播方向一致.粒子尺寸与空心光束尺寸越接近时,横向光泳力的大小越大.结果表明该光泳力可以实现对大尺寸粒子的二维囚禁,同时可对粒子进行长距离(米量级)一维定向导引;理论上分析并计算了基于双非线性ZnSe晶体产生的局域空心光束内粒子所受横向与纵向光泳力情况,光泳力与系统参数的依赖关系与单个非线性晶体产生的空心光束中的粒子受力情况类似,不同的是该条件下纵向光泳力指向光束中心.结果表明该局域空心光束可以实现大尺寸粒子的三维有效囚禁.基于非线性ZnSe晶体产生的空心光束或者局域空心光束可以作为大尺寸粒子非接触式有效操控的工具,在现代光学以及生物医学中有潜在的应用.
    Since 1970, the trapping of the small objects in space by optical radiation pressure, such as nano particles and other atomic living cells, has been successfully developed and used in the applied physics, life sciences and other fields. As the optical radiation pressure is very weak, the use of radiation pressure on the particle will be strictly limited by the particle size. Also, the manipulated particles can move particle with only hundreds of microns. Therefore, it is not suitable for trapping and long-distance transporting particles with large size (micron). In recent years, with the development of the manipulation technology for large particles, a new control force-photophotetic force has gradually entered into people's vision field. Compared with the optical radiation pressure, the photophoretic force is much large under the same light intensity. Therefore, the photophoretic force makes it possible to manipulate and trap the large particles. With the development of laser beam-shaping technology, the species of laser beams become more and more abundant, which makes it more attractive to study particle manipulation based on the photophoretic force. For example, a hollow beam is used to capture and guide carbon nanoclusters in the air. A tapered optical fiber is used to trap, migrate and separate SiO2 particles. A Bessel Gaussian beam is used to trap and manipulate magnetic particles. An airy beam is used to trap glass carbon particles of absorption type. In this paper, a trapping and guiding scheme for large-size particles by using the photophoretic force of the hollow beams generated by nonlinear ZnSe crystals is proposed and analyzed theoretically. Our calculated results can be concluded as follows. 1) For the cases of two-dimensional particle trapping and one-dimentional particle guiding using a hollow beam generated by a single nonlinear ZnSe crystal, the magnitude of the longitudianl optical force is proportional to the ratio between particle size and hollow beam size to the fourth power and is proportional to the power of the hollow beam, and the direction is the same as that of the beam propagation. The closer to the hollow beam size the particle size, the greater the transverse optical force is. The results show that the photophoretic force can achieve the two-dimensional trapping of large-size particles, and a long distance (in a meter region) guiding. 2) For the case of three-dimensional particle trapping using a localized hollow beam generated by two nonlinear ZnSe crystals, the dependence of transverse photophoretic forceand that of longitudinal photophoretic force on the system parameters are similar to the scenario for the particles trapping in the hollow beam produced by a single nonlinear crystal. The difference is that under this condition, the direction of the longitudinal photophoretic force points to the center of the beam. So this scheme can achieve the effective three-dimensional trapping of large-size particles. Above all, the hollow beams generated by nonlinear ZnSe crystals can be used as an effective noncontact controlling tool for large-size particels, and might have potential applications in modern optics and biomedicine.
      通信作者: 尹亚玲, ylyin@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274114,11374100)和上海市自然科学基金探索类项目(批准号:17ZR1443000)资助的课题.
      Corresponding author: Yin Ya-Ling, ylyin@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274114, 11374100) and the National Science Foundation of Shanghai Municipality, China (Grant No. 17ZR1443000).
    [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156

    [2]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [3]

    Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophoton 2 021875

    [4]

    Chu S 1998 Rev. Mod. Phys. 70 685

    [5]

    Ashkin A, Dziedzic J M, Yamane T 1987 Nature 330 769

    [6]

    Davis E J, Schweiger G 2002 The Air Borne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Heidelberg: Springer) pp780-785

    [7]

    Shvedov V G, Desyatnikov A S, Rode A V, Krolikowski W, Kivshar Y S 2009 Opt. Express 17 5743

    [8]

    Xin H B, Li X M, Li B J 2011 Opt. Express 19 17065

    [9]

    Xin H B, Bao D H, Zhong F, Li B J 2013 Laser Phys. Lett. 10 036004

    [10]

    Zhang Z G, Liu F R, Zhang Q C, Cheng T, Wu X P 2014 Acta Phys. Sin. 63 028701(in Chinese) [张志刚, 刘丰瑞, 张青川, 程腾, 伍小平 2014 物理学报 63 028701]

    [11]

    Gong L, Liu W W, Zhao Q, Ren Y X, Qiu X Z, Zhong M C, Li Y M 2016 Sci. Rep. 6 29001

    [12]

    Zhang Z, Zhang P, Mills M, Chen Z G, Christodoulides D N, Liu J J 2013 Chin. Opt. Lett. 11 033502

    [13]

    Du X L, Yin Y L, Zheng G J, Guo C X, Sun Y, Zhou Z N, Bai S J, Wang H L, Xia Y, Yin J P 2014 Opt. Commun. 332 179

    [14]

    Wang Z Z, Ren R M, Xia M, Xia Y, Yin Y L, Yin J P 2017 Las. Optoelect. Prog. 54 071901(in Chinese) [王志章, 任瑞敏, 夏梦, 夏勇, 尹亚玲, 印建平 2017 激光与光电子学进展 54 071901]

    [15]

    Lewittes M, Arnold S, Oster G 1982 Appl. Phys. Lett. 40 455

    [16]

    Shvedov V G, Rode A V, Izdebskaya Y V, Desyatnikov A S, Krolikowski W, Kivshar Y S 2010 Phys. Rev. Lett. 105 118103

    [17]

    Desyatnikov A S, Shvedov V G, Rode V A, Krolikowski W, Kivshar Y S 2009 Opt. Express 17 8201

  • [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156

    [2]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [3]

    Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophoton 2 021875

    [4]

    Chu S 1998 Rev. Mod. Phys. 70 685

    [5]

    Ashkin A, Dziedzic J M, Yamane T 1987 Nature 330 769

    [6]

    Davis E J, Schweiger G 2002 The Air Borne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Heidelberg: Springer) pp780-785

    [7]

    Shvedov V G, Desyatnikov A S, Rode A V, Krolikowski W, Kivshar Y S 2009 Opt. Express 17 5743

    [8]

    Xin H B, Li X M, Li B J 2011 Opt. Express 19 17065

    [9]

    Xin H B, Bao D H, Zhong F, Li B J 2013 Laser Phys. Lett. 10 036004

    [10]

    Zhang Z G, Liu F R, Zhang Q C, Cheng T, Wu X P 2014 Acta Phys. Sin. 63 028701(in Chinese) [张志刚, 刘丰瑞, 张青川, 程腾, 伍小平 2014 物理学报 63 028701]

    [11]

    Gong L, Liu W W, Zhao Q, Ren Y X, Qiu X Z, Zhong M C, Li Y M 2016 Sci. Rep. 6 29001

    [12]

    Zhang Z, Zhang P, Mills M, Chen Z G, Christodoulides D N, Liu J J 2013 Chin. Opt. Lett. 11 033502

    [13]

    Du X L, Yin Y L, Zheng G J, Guo C X, Sun Y, Zhou Z N, Bai S J, Wang H L, Xia Y, Yin J P 2014 Opt. Commun. 332 179

    [14]

    Wang Z Z, Ren R M, Xia M, Xia Y, Yin Y L, Yin J P 2017 Las. Optoelect. Prog. 54 071901(in Chinese) [王志章, 任瑞敏, 夏梦, 夏勇, 尹亚玲, 印建平 2017 激光与光电子学进展 54 071901]

    [15]

    Lewittes M, Arnold S, Oster G 1982 Appl. Phys. Lett. 40 455

    [16]

    Shvedov V G, Rode A V, Izdebskaya Y V, Desyatnikov A S, Krolikowski W, Kivshar Y S 2010 Phys. Rev. Lett. 105 118103

    [17]

    Desyatnikov A S, Shvedov V G, Rode V A, Krolikowski W, Kivshar Y S 2009 Opt. Express 17 8201

  • [1] 黄雪峰, 刘敏, 卢山, 张敏琦, 李盛姬, 罗丹. 强吸收纳米粒子团簇的光泳力悬浮及热泳力下的迁移行为. 物理学报, 2024, 73(13): 134206. doi: 10.7498/aps.73.20240288
    [2] 张霞萍. 自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用. 物理学报, 2020, 69(2): 024204. doi: 10.7498/aps.69.20191272
    [3] 朱洁, 朱开成. 像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生. 物理学报, 2016, 65(20): 204204. doi: 10.7498/aps.65.204204
    [4] 龚宁, 朱开成, 夏辉. 四瓣高斯光束的Gyrator变换性质和矩形空心光束的产生. 物理学报, 2016, 65(12): 124204. doi: 10.7498/aps.65.124204
    [5] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [6] 任瑞敏, 尹亚玲, 王志章, 郭超修, 印建平. 亚微米局域空心光束的产生及其在单原子囚禁与冷却中的应用理论研究. 物理学报, 2016, 65(11): 114101. doi: 10.7498/aps.65.114101
    [7] 朱清智, 吴逢铁, 胡润, 冯聪. 空心光束尺寸的精确调控. 物理学报, 2016, 65(18): 184101. doi: 10.7498/aps.65.184101
    [8] 周琦, 陆俊发, 印建平. 可控双空心光束的理论方案及实验研究. 物理学报, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [9] 谢晓霞, 王硕琛, 吴逢铁. Bessel光束经椭圆环形孔径后的衍射光场. 物理学报, 2015, 64(12): 124201. doi: 10.7498/aps.64.124201
    [10] 朱开成, 唐慧琴, 郑小娟, 唐英. 广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生. 物理学报, 2014, 63(10): 104210. doi: 10.7498/aps.63.104210
    [11] 陈国钧, 周巧巧, 纪宪明, 印建平. 用线偏振光产生可调矢量椭圆空心光束. 物理学报, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [12] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测. 物理学报, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [13] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [14] 喻松, 廖屏, 杨展予, 顾畹仪. 基于相干粒子数囚禁的电磁诱导光栅研究. 物理学报, 2013, 62(22): 224205. doi: 10.7498/aps.62.224205
    [15] 程治明, 吴逢铁, 方翔, 范丹丹, 朱健强. 圆顶轴棱锥产生多个局域空心光束. 物理学报, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [16] 程治明, 吴逢铁, 张前安, 郑维涛. 自成像局域空心光束产生的新方法及粒子俘获. 物理学报, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [17] 张前安, 吴逢铁, 郑维涛, 马亮. 新型锥透镜产生局域空心光束. 物理学报, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [18] 蒋云峰, 陆璇辉, 赵承良. 高度聚焦的余弦高斯光束对瑞利粒子的辐射力分析. 物理学报, 2010, 59(6): 3959-3964. doi: 10.7498/aps.59.3959
    [19] 罗亚梅, 吕百达. 异常空心光束通过球差光阑透镜的聚焦和在焦区的位相奇异特性. 物理学报, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [20] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
计量
  • 文章访问数:  6437
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 修回日期:  2017-09-21
  • 刊出日期:  2018-01-05

/

返回文章
返回