搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时域有限差分法数值仿真单光镊中微球受到的光阱力

胡耿军 李静 龙潜 陶陶 张恭轩 伍小平

引用本文:
Citation:

时域有限差分法数值仿真单光镊中微球受到的光阱力

胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平

FDTD numerical simulation of the trapping force of microspherein single optical tweezers

Hu Geng-Jun, Li Jing, Long Qian, Tao Tao, Zhang Gong-Xuan, Wu Xiao-Ping
PDF
导出引用
  • 本文采用三维时域有限差分法(FDTD)和Maxwell应力张量法建立了单光镊在焦点附近俘获球形微粒的光阱力模型,采用基于球矢量波函数(VSWF)的五阶高斯光源作为仿真光源,得到了准确的光场传播.讨论了光源的波长、束腰、偏振态和微球的半径、折射率对光阱力的影响,分析了在单光镊俘获微球时,邻近微球对光阱力的影响.特别研究了光源的偏振态对微球所受光阱力的作用效果,仿真结果表明圆偏振光比线偏振光对微球的俘获力更大;被光镊稳定俘获的微球,会受到邻近微球干扰,失去平衡状态,改变光源的偏振态可以改变微球的受力状态.
    In this paper the model of trapping force on microsphere near focus in single optical tweezers is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods. Fifth order Gaussian beam based on spherical vector wave function (VSWF) is adopted as simulation light source; the correct light field transmission is obtained. The influences of the wavelength, waist and polarization of light sources, the radius and refractive index of the microsphere on the optical trapping force are discussed. The influence of nearby microsphere and beam polarization on the trapping force of the trapped microsphere in single optical tweezers is analyzed. The effect of beam polarization working on the trapping force of the trapped microsphere is specially analyzed. As results of simulation, the trapping force acting on the microsphere by the circularly polarized beam is larger than that by the linearly polarized beam. The stability of the trapped microsphere in single optical tweezers will be disturbed by the nearby microsphere and lose its balance. Varying the beam polarization will lead to the change of the trapping force of the trapped microsphere.
    • 基金项目: 国家自然科学基金(批准号:50975271)资助的课题.
    [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156

    [2]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [3]

    Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57 314

    [4]

    Chu S 1991 Science 253 861

    [5]

    Horst A, Campbell A, Vugt L K, Vanmaekelbergh D A M, Dogterom M, Blaaderen A 2007 Opt. Exp. 15 11629

    [6]

    Pauzauskie P J, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J 2006 Nature 5 97

    [7]

    Zhang Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [张艳丽、赵逸琼、詹其文、李永平 2006 物理学报 55 1253]

    [8]

    Ashkin A 1992 J. Biophys. 61 569

    [9]

    Gussgard R, Lindmo T 1992 J. Opt. Soc. Am. B 9 1922

    [10]

    Harada Y, Asakura T 1996 Opt. Commun. 124 529

    [11]

    White D A 2000 Comput. Phys. Commun. 128 558

    [12]

    Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R, Bishop A I 2001 Comput. Phys. Commun. 142 468

    [13]

    Simpson S H, Hanna S 2006 J. Opt. Soc. Am. A 23 1419

    [14]

    Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R 2003 J. Quant. Spectrosc. Radiat. Transfer 79 1005

    [15]

    Gauthier R C 2005 Opt. Exp. 13 3707

    [16]

    Benito D C, Simpson S H, Hanna S 2008 Opt. Exp. 16 2942

    [17]

    Yan H, Feng G Y, Zhu Q H, Zhang D Y, Zhou S H 2008 Acta Phys. Sin. 57 5506 (in Chinese) [杨 浩、冯国英、朱启华、张大勇、周寿桓 2008 物理学报 57 5506]

    [18]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [19]

    Taflove A, Hagness S C 2005 Computational electrodynamics: The Finite-Difference Time-Domain Method (Third Edition) (Norwood, MA: Artech House)

    [20]

    Yang R G, Cheng D Z, Liu P C 1991 Electromagnetic Theory (Xian: Xian Jiaotong University Press) p53 (in Chinese) [杨儒贵、陈达章、刘鹏程 1991 电磁理论(西安:西安交通大学出版社)第53页]

    [21]

    Han Y P, Du Y G, Zhang H Y 2006 Acta Phys. Sin. 55 4557(in Chinese) [韩一平、杜云刚、张华永 2006 物理学报 55 4557 ]

    [22]

    Simpson S H, Hanna S 2007 J. Opt. Soc. Am. A 24 430

  • [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156

    [2]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288

    [3]

    Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57 314

    [4]

    Chu S 1991 Science 253 861

    [5]

    Horst A, Campbell A, Vugt L K, Vanmaekelbergh D A M, Dogterom M, Blaaderen A 2007 Opt. Exp. 15 11629

    [6]

    Pauzauskie P J, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J 2006 Nature 5 97

    [7]

    Zhang Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [张艳丽、赵逸琼、詹其文、李永平 2006 物理学报 55 1253]

    [8]

    Ashkin A 1992 J. Biophys. 61 569

    [9]

    Gussgard R, Lindmo T 1992 J. Opt. Soc. Am. B 9 1922

    [10]

    Harada Y, Asakura T 1996 Opt. Commun. 124 529

    [11]

    White D A 2000 Comput. Phys. Commun. 128 558

    [12]

    Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R, Bishop A I 2001 Comput. Phys. Commun. 142 468

    [13]

    Simpson S H, Hanna S 2006 J. Opt. Soc. Am. A 23 1419

    [14]

    Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R 2003 J. Quant. Spectrosc. Radiat. Transfer 79 1005

    [15]

    Gauthier R C 2005 Opt. Exp. 13 3707

    [16]

    Benito D C, Simpson S H, Hanna S 2008 Opt. Exp. 16 2942

    [17]

    Yan H, Feng G Y, Zhu Q H, Zhang D Y, Zhou S H 2008 Acta Phys. Sin. 57 5506 (in Chinese) [杨 浩、冯国英、朱启华、张大勇、周寿桓 2008 物理学报 57 5506]

    [18]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [19]

    Taflove A, Hagness S C 2005 Computational electrodynamics: The Finite-Difference Time-Domain Method (Third Edition) (Norwood, MA: Artech House)

    [20]

    Yang R G, Cheng D Z, Liu P C 1991 Electromagnetic Theory (Xian: Xian Jiaotong University Press) p53 (in Chinese) [杨儒贵、陈达章、刘鹏程 1991 电磁理论(西安:西安交通大学出版社)第53页]

    [21]

    Han Y P, Du Y G, Zhang H Y 2006 Acta Phys. Sin. 55 4557(in Chinese) [韩一平、杜云刚、张华永 2006 物理学报 55 4557 ]

    [22]

    Simpson S H, Hanna S 2007 J. Opt. Soc. Am. A 24 430

  • [1] 白靖, 葛城显, 何浪, 刘轩, 吴振森. 椭圆波束对非均匀手征分层粒子的俘获特性研究. 物理学报, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [2] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术. 物理学报, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [3] 张书赫, 梁振, 周金华. 运用四元数分析椭球微粒所受的光阱力. 物理学报, 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [4] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [5] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法. 物理学报, 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [6] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测. 物理学报, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [7] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [8] 张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平. 红外显微观测被俘获吸光性颗粒. 物理学报, 2013, 62(20): 208702. doi: 10.7498/aps.62.208702
    [9] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [10] 周丹丹, 任煜轩, 刘伟伟, 龚雷, 李银妹. 时间飞行法测量光阱刚度的实验研究 . 物理学报, 2012, 61(22): 228702. doi: 10.7498/aps.61.228702
    [11] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [12] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [13] 杨 浩, 冯国英, 朱启华, 张大勇, 周寿桓. 聚焦光场俘获微球的FDTD分析. 物理学报, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [14] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法. 物理学报, 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [15] 曾夏辉, 吴逢铁, 刘 岚. 干涉理论对bottle beam的描述. 物理学报, 2007, 56(2): 791-797. doi: 10.7498/aps.56.791
    [16] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [17] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [18] 张艳丽, 赵逸琼, 詹其文, 李永平. 高数值孔径聚焦三维光链的研究. 物理学报, 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [19] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
    [20] 马坚伟, 杨慧珠, 朱亚平. 多尺度有限差分法模拟复杂介质波传问题. 物理学报, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
计量
  • 文章访问数:  7529
  • PDF下载量:  1401
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-23
  • 修回日期:  2010-05-26
  • 刊出日期:  2011-03-15

时域有限差分法数值仿真单光镊中微球受到的光阱力

  • 1. (1)中国科学技术大学近代力学系,合肥 230027; (2)中国科学技术大学精密机械与精密仪器系,合肥 230027
    基金项目: 国家自然科学基金(批准号:50975271)资助的课题.

摘要: 本文采用三维时域有限差分法(FDTD)和Maxwell应力张量法建立了单光镊在焦点附近俘获球形微粒的光阱力模型,采用基于球矢量波函数(VSWF)的五阶高斯光源作为仿真光源,得到了准确的光场传播.讨论了光源的波长、束腰、偏振态和微球的半径、折射率对光阱力的影响,分析了在单光镊俘获微球时,邻近微球对光阱力的影响.特别研究了光源的偏振态对微球所受光阱力的作用效果,仿真结果表明圆偏振光比线偏振光对微球的俘获力更大;被光镊稳定俘获的微球,会受到邻近微球干扰,失去平衡状态,改变光源的偏振态可以改变微球的受力状态.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回