-
本文利用同伦分析方法得到了Sinh-Gordon方程的近似解.在所得到的解中包含一个辅助参数,可以有效地控制级数解的收敛范围和收敛速度.
-
关键词:
- 同伦分析方法 /
- Sinh-Gordon方程 /
- 近似解
In this paper, approximate solution of the Sinh-Gordon equation is obtained via the homotopy analysis method. The obtained solution contains an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions.[1] Ablowitz M J, Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge Univ. Press)
[2] Li Y S 1999 Soliton and integrable system (Shanghai: Shanghai Sci. Edu. Press) (in Chinese)
[3] Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522
[4] Malfliet W 1992 Am. J. Phys. 60 650
[5] Parkes E J, Duffy B R 1996 Comput. Phys. Commun. 98 288
[6] Lai S Y, Guo Y X, Qing Y, Wu Y H 2009 Chin. Phys. B 18 405
[7] Fan E G 2002 Phys. Lett. A 294 26
[8] Yan Z Y 2001 Phys. Lett. A 292 100
[9] Li B 2007 Int. J. Mod. Phys. C 18 1187
[10] Zhang S Q 2008 Acta Phys. Sin. 57 1335 (in Chinese) [张善卿 2008 物理学报 57 1335]
[11] Li W, Liu S B, Yang W 2010 Chin. Phys. B 19 030307
[12] Gu Y Q 2010 Chin. Phys. B 19 030402
[13] Yao R X, Jiao X Y, Lou S Y 2009 Chin. Phys. B 18 1821
[14] Jiao X Y, Lou S Y 2009 Chin. Phys. B 18 3611
[15] Li J H, Lou S Y 2008 Chin. Phys. B 17 747
[16] Wang J, Li B 2009 Chin. Phys. B 18 2109
[17] Zhang H P, Chen Y, Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese) [张焕萍、陈 勇、李 彪 2009 物理学报 58 7393]
[18] Wang Y F, Lou S Y 2010 Chin. Phys. B 19 091128
[19] Hu X R, Chen Y 2010 Chin. Phys. B 19 091982
[20] Dong Z Z, Lang Y H, Chen Y 2010 Chin. Phys. B 19 091846
[21] Tang X Y, Lou S Y, Zhang Y 2002 Phys. Rev. E 66 046601 Tang X Y, Lou S Y 2003 Chin. Phys. Lett. 3 335
[22] Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta Phys. Sin. 59 44 (in Chinese) [张 亮、张立凤、吴海燕、李 刚 2010 物理学报 59 44]
[23] Huang J J, Alatancang, Wang H 2009 Chin. Phys. B 18 3616 Hou G L, Alatancang 2008 Chin. Phys. B 17 2753
[24] He G, Mei F X 2008 Acta Phys. Sin. 57 18 (in Chinese) [何 光、梅凤翔 2008 物理学报 57 18]
[25] Liao S J 2003 Chapman and Hall/CRC Press, Boca Raton
[26] Hayat T Khan M, Asghar S 2004 Acta. Mech. 168 213
[27] Liao S J 2009 Commun. Nonlinear Sci. Numer. Simulat 14 983 Liao S J 2010 Commun. Nonlinear Sci. Numer. Simulat 15 2003
[28] Niu Z, Wang C 2010 Commun. Nonlinear Sci. Numer. Simulat 15 2026
[29] Wu W, Liao S J 2005 Chaos, Solitons & Fractals 26 177
[30] Wu Y Y, Wang C, Liao S J 2005 Chaos, Solitons & Fractals 23 1733
[31] Abbasbandy S, Magyari E, Shivanian E 2009 Commun. Nonlinear. Sci. Numer. Simulat 14 3530
[32] Wang J, Li B, Ye WC 2010 Chin. Phys. B 19 030401
[33] Liu X Z 2010 Chin. Phys. B 19 100019
[34] Corrigan E E, Delius G W 1999 J. Phys. A: Math. Gen. 32 8601
[35] Tang Y N, Xu W, Shen J W 2008 Commun. Nonlinear. Sci. Numer. Simulat 13 1048
[36] Papa E, Tsvelik A M 1999 Phys. Rev. B 60 12752
[37] Wazwaz A M 2005 Appl. Math. Comput. 167 1196
-
[1] Ablowitz M J, Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge Univ. Press)
[2] Li Y S 1999 Soliton and integrable system (Shanghai: Shanghai Sci. Edu. Press) (in Chinese)
[3] Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522
[4] Malfliet W 1992 Am. J. Phys. 60 650
[5] Parkes E J, Duffy B R 1996 Comput. Phys. Commun. 98 288
[6] Lai S Y, Guo Y X, Qing Y, Wu Y H 2009 Chin. Phys. B 18 405
[7] Fan E G 2002 Phys. Lett. A 294 26
[8] Yan Z Y 2001 Phys. Lett. A 292 100
[9] Li B 2007 Int. J. Mod. Phys. C 18 1187
[10] Zhang S Q 2008 Acta Phys. Sin. 57 1335 (in Chinese) [张善卿 2008 物理学报 57 1335]
[11] Li W, Liu S B, Yang W 2010 Chin. Phys. B 19 030307
[12] Gu Y Q 2010 Chin. Phys. B 19 030402
[13] Yao R X, Jiao X Y, Lou S Y 2009 Chin. Phys. B 18 1821
[14] Jiao X Y, Lou S Y 2009 Chin. Phys. B 18 3611
[15] Li J H, Lou S Y 2008 Chin. Phys. B 17 747
[16] Wang J, Li B 2009 Chin. Phys. B 18 2109
[17] Zhang H P, Chen Y, Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese) [张焕萍、陈 勇、李 彪 2009 物理学报 58 7393]
[18] Wang Y F, Lou S Y 2010 Chin. Phys. B 19 091128
[19] Hu X R, Chen Y 2010 Chin. Phys. B 19 091982
[20] Dong Z Z, Lang Y H, Chen Y 2010 Chin. Phys. B 19 091846
[21] Tang X Y, Lou S Y, Zhang Y 2002 Phys. Rev. E 66 046601 Tang X Y, Lou S Y 2003 Chin. Phys. Lett. 3 335
[22] Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta Phys. Sin. 59 44 (in Chinese) [张 亮、张立凤、吴海燕、李 刚 2010 物理学报 59 44]
[23] Huang J J, Alatancang, Wang H 2009 Chin. Phys. B 18 3616 Hou G L, Alatancang 2008 Chin. Phys. B 17 2753
[24] He G, Mei F X 2008 Acta Phys. Sin. 57 18 (in Chinese) [何 光、梅凤翔 2008 物理学报 57 18]
[25] Liao S J 2003 Chapman and Hall/CRC Press, Boca Raton
[26] Hayat T Khan M, Asghar S 2004 Acta. Mech. 168 213
[27] Liao S J 2009 Commun. Nonlinear Sci. Numer. Simulat 14 983 Liao S J 2010 Commun. Nonlinear Sci. Numer. Simulat 15 2003
[28] Niu Z, Wang C 2010 Commun. Nonlinear Sci. Numer. Simulat 15 2026
[29] Wu W, Liao S J 2005 Chaos, Solitons & Fractals 26 177
[30] Wu Y Y, Wang C, Liao S J 2005 Chaos, Solitons & Fractals 23 1733
[31] Abbasbandy S, Magyari E, Shivanian E 2009 Commun. Nonlinear. Sci. Numer. Simulat 14 3530
[32] Wang J, Li B, Ye WC 2010 Chin. Phys. B 19 030401
[33] Liu X Z 2010 Chin. Phys. B 19 100019
[34] Corrigan E E, Delius G W 1999 J. Phys. A: Math. Gen. 32 8601
[35] Tang Y N, Xu W, Shen J W 2008 Commun. Nonlinear. Sci. Numer. Simulat 13 1048
[36] Papa E, Tsvelik A M 1999 Phys. Rev. B 60 12752
[37] Wazwaz A M 2005 Appl. Math. Comput. 167 1196
计量
- 文章访问数: 8608
- PDF下载量: 706
- 被引次数: 0