搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学微操纵过程的轴平面显微成像技术

安莎 彭彤 周兴 韩国霞 黄张翔 于湘华 蔡亚楠 姚保利 张鹏

引用本文:
Citation:

光学微操纵过程的轴平面显微成像技术

安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏

Observation of particle manipulation with axial plane optical microscopy

An Sha, Peng Tong, Zhou Xing, Han Guo-Xia, Huang Zhang-Xiang, Yu Xiang-Hua, Cai Ya-Nan, Yao Bao-Li, Zhang Peng
PDF
导出引用
  • 光学俘获技术利用光与物质相互作用产生的光势阱效应来实现对微粒的操控,已经成功应用于生物医学、材料科学等交叉领域.在对微粒进行三维俘获时,传统的宽场光学显微技术只能观测到某一平面内微粒的横向运动,对微粒沿轴向运动的观测受到很大限制.本文将轴平面显微成像技术引入光学微粒操控研究中,利用45°倾斜的反射镜把微粒的轴向运动信息转换到横向平面进行观测,与传统宽场显微成像技术相结合,实现了对二氧化硅小球俘获过程横向和轴向运动的同步观测.该成像方法无需扫描和数据重构,具有实时快速等优点,在新型光束光镊、厚样品三维观测和成像等领域具有潜在的应用价值.
    Optical micromanipulation of particles based on the optical trapping effect induced by the interaction between light and particles has been successfully applied to many interdisciplinary fields including biomedicine and material sciences. When particles are trapped in three dimensions, the conventional wide-field optical microscopy can only monitor the movement of the trapped particles in a certain transverse plane. The ability to observe the particle movement along light trajectories is limited. Recently, a novel method named axial plane optical microscopy(APOM) has been developed to directly image the axial plane that is parallel to the optical axis of an objective lens. The APOM observes the axial plane by converting the axial information of a sample into that of a transverse plane by using a 45°-tilted mirror. In this paper, we propose and demonstrate that the APOM serves as an effective tool for observing the axial movement of particles in optical tweezers. By combining with a conventional wide-field optical microscopy, we show that both transverse and axial information can be acquired simultaneously for the optical micromanipulation. As in our first experimental demonstration, we observe two particles which are trapped and aligned along the optical axis. From the transverse image, only one particle is observable, and it is difficult to obtain the information along the axial direction. However, in the axial plane imaging, the longitudinal dipolar structure formed by the two particles is clearly visible. This clearly demonstrates the APOM imaging capability along the axial axis. The numerically simulations on the trapping focal spot against the position of a collimating lens agree well with our experimental APOM results. Furthermore, we directly observe the dynamic capture process of a single trapped particle in transverse plane by conventional wide-field optical microscopy as well in axial plane by the APOM, and can obtain the 3D information rapidly and simultaneously. We point out that the observable axial dynamic range is about 30 μm. Taking advantages of no requirement of scanning and data reconstruction, the APOM has potential applications in many fields, including optical trapping with novel beams and 3D imaging of thick biological specimens.
      通信作者: 姚保利, yaobl@opt.ac.cn;pengzhang@opt.ac.cn ; 张鹏, yaobl@opt.ac.cn;pengzhang@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574389,81427802)资助的课题.
      Corresponding author: Yao Bao-Li, yaobl@opt.ac.cn;pengzhang@opt.ac.cn ; Zhang Peng, yaobl@opt.ac.cn;pengzhang@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11574389, 81427802).
    [1]

    Ashkin A, Dziedzic J, Bjorkholm J 1986 Opt. Lett. 11 288

    [2]

    Durnin J, Miceli J, Eberly H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McQueen C A, Arlt J, Dholakia K 1999 Am. J. Phys. 67 912

    [4]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [5]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [6]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [7]

    Yu X H, Yao B L, Lei M, Yan S H, Yang Y L, Li R Z, Cai Y N 2015 Acta Phys. Sin. 64 244203 (in Chinese)[于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠2015物理学报64 244203]

    [8]

    Zhang P, Hu Y, Li T C, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [9]

    Zhao J Y, Zhang P, Deng D M, Liu J J, Gao Y M, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z G 2013 Opt. Lett. 38 498

    [10]

    Yu X H, Li R Z, Yan S H, Yao B L, Gao P, Han G X, Lei M M 2016 Appl. Opt. 55 3090

    [11]

    Zhang Z, Zhang P, Mills M, Chen Z G, Christodoulides D N, Liu J J 2013 Chin. Opt. Lett. 11 033502

    [12]

    Schley R, Kaminer I, Greenfield E, Bekenstein R, Lumer Y, Segev M 2014 Nat. Commun. 5 5189

    [13]

    Abbe E 1884 J. Royal Microscop. Soc. 4 20

    [14]

    Murayam M, Pérez-Garci E, NevianT, Bock T, Senn W, Larkum M E 2009 Nature 457 1137

    [15]

    Dunsby C 2008 Opt. Express 16 20306

    [16]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy(New York:Springer US) pp20-42

    [17]

    Conchello J A, Lichtman J W 2005 Nat. Methods 2 920

    [18]

    Lin H M, Shao Y H, Qu J L, Yin J, Chen S P, Niu H B 2008 Acta Phys. Sin. 57 7641 (in Chinese)[林浩铭, 邵永红, 屈军乐, 尹君, 陈思平, 牛憨笨2008物理学报57 7641]

    [19]

    Kim J, Li T C, Wang Y, Zhang X 2014 Opt. Express 22 11140

    [20]

    Li T C, Ota S, Kim J, Wong Z J, Wang Y, Yin X B, Zhang X 2014 Sci. Rep. 4 7253

    [21]

    Shvedov V, Davoyan A R, Hnatovsky C, Engheta N, Krolikowski W 2014 Nat. Photon. 8 846

    [22]

    Sukhov S, Dogariu A 2011 Phys. Rev. Lett. 107 203602

    [23]

    Kajorndejnukul V, Ding W, Sukhov S, Dogariu A 2013 Nat. Photon. 7 787

    [24]

    Dogariu A, Sukhov S, Sáenz J 2013 Acta Phys. Sin. 62 100701 (in Chinese)[任洪亮2013物理学报62 100701]

  • [1]

    Ashkin A, Dziedzic J, Bjorkholm J 1986 Opt. Lett. 11 288

    [2]

    Durnin J, Miceli J, Eberly H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McQueen C A, Arlt J, Dholakia K 1999 Am. J. Phys. 67 912

    [4]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [5]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [6]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [7]

    Yu X H, Yao B L, Lei M, Yan S H, Yang Y L, Li R Z, Cai Y N 2015 Acta Phys. Sin. 64 244203 (in Chinese)[于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠2015物理学报64 244203]

    [8]

    Zhang P, Hu Y, Li T C, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [9]

    Zhao J Y, Zhang P, Deng D M, Liu J J, Gao Y M, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z G 2013 Opt. Lett. 38 498

    [10]

    Yu X H, Li R Z, Yan S H, Yao B L, Gao P, Han G X, Lei M M 2016 Appl. Opt. 55 3090

    [11]

    Zhang Z, Zhang P, Mills M, Chen Z G, Christodoulides D N, Liu J J 2013 Chin. Opt. Lett. 11 033502

    [12]

    Schley R, Kaminer I, Greenfield E, Bekenstein R, Lumer Y, Segev M 2014 Nat. Commun. 5 5189

    [13]

    Abbe E 1884 J. Royal Microscop. Soc. 4 20

    [14]

    Murayam M, Pérez-Garci E, NevianT, Bock T, Senn W, Larkum M E 2009 Nature 457 1137

    [15]

    Dunsby C 2008 Opt. Express 16 20306

    [16]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy(New York:Springer US) pp20-42

    [17]

    Conchello J A, Lichtman J W 2005 Nat. Methods 2 920

    [18]

    Lin H M, Shao Y H, Qu J L, Yin J, Chen S P, Niu H B 2008 Acta Phys. Sin. 57 7641 (in Chinese)[林浩铭, 邵永红, 屈军乐, 尹君, 陈思平, 牛憨笨2008物理学报57 7641]

    [19]

    Kim J, Li T C, Wang Y, Zhang X 2014 Opt. Express 22 11140

    [20]

    Li T C, Ota S, Kim J, Wong Z J, Wang Y, Yin X B, Zhang X 2014 Sci. Rep. 4 7253

    [21]

    Shvedov V, Davoyan A R, Hnatovsky C, Engheta N, Krolikowski W 2014 Nat. Photon. 8 846

    [22]

    Sukhov S, Dogariu A 2011 Phys. Rev. Lett. 107 203602

    [23]

    Kajorndejnukul V, Ding W, Sukhov S, Dogariu A 2013 Nat. Photon. 7 787

    [24]

    Dogariu A, Sukhov S, Sáenz J 2013 Acta Phys. Sin. 62 100701 (in Chinese)[任洪亮2013物理学报62 100701]

  • [1] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正. 物理学报, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [2] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [3] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [4] 汪涵聪, 李志鹏. 表面增强光学力与光操纵研究进展. 物理学报, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [5] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术. 物理学报, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [6] 周锐, 吴梦雪, 沈飞, 洪明辉. 基于近场光学的微球超分辨显微效应. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [7] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析. 物理学报, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [8] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾. 物理学报, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [9] 冯驰, 常军, 杨海波. 双小凹光学成像系统设计. 物理学报, 2015, 64(3): 034201. doi: 10.7498/aps.64.034201
    [10] 吴健雄, 程腾, 张青川, 高杰, 伍小平. 光学读出红外成像中面光源影响下的光学检测灵敏度研究. 物理学报, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [11] 姚银萍, 万仁刚, 薛玉郎, 张世伟, 张同意. 基于统计光学的正负热光非定域成像. 物理学报, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [12] 王淑莹, 章海军, 张冬仙. 基于微球透镜的任选区高分辨光学显微成像新方法研究. 物理学报, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [13] 庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才. 偏振对光学系统成像质量的影响. 物理学报, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [14] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像. 物理学报, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [15] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究. 物理学报, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [16] 程科, 钟先琼, 向安平. 相干和非相干合成光束对金属瑞利粒子的光学俘获. 物理学报, 2012, 61(7): 074202. doi: 10.7498/aps.61.074202
    [17] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制. 物理学报, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [18] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析. 物理学报, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [19] 张 航. 基于δ声波场的生物组织光学断层成像研究. 物理学报, 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
    [20] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
计量
  • 文章访问数:  3633
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-21
  • 修回日期:  2016-09-06
  • 刊出日期:  2017-01-05

光学微操纵过程的轴平面显微成像技术

    基金项目: 国家自然科学基金(批准号:11574389,81427802)资助的课题.

摘要: 光学俘获技术利用光与物质相互作用产生的光势阱效应来实现对微粒的操控,已经成功应用于生物医学、材料科学等交叉领域.在对微粒进行三维俘获时,传统的宽场光学显微技术只能观测到某一平面内微粒的横向运动,对微粒沿轴向运动的观测受到很大限制.本文将轴平面显微成像技术引入光学微粒操控研究中,利用45°倾斜的反射镜把微粒的轴向运动信息转换到横向平面进行观测,与传统宽场显微成像技术相结合,实现了对二氧化硅小球俘获过程横向和轴向运动的同步观测.该成像方法无需扫描和数据重构,具有实时快速等优点,在新型光束光镊、厚样品三维观测和成像等领域具有潜在的应用价值.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回