-
随着科技发展, 如何解决大视场和高分辨率之间的矛盾成为了众多科技人员的研究重心之一, 本文提出了双小凹成像系统的概念, 在传统仿真人眼的单小凹成像系统的基础上, 通过引入反射式液晶空间光调制器对光学系统进行两个视场内波像差的调制, 改善对应的像差, 从而实现了大视场内低分辨率成像的条件下, 在两个特定的视场内满足高分辨率成像, 因此可解决大视场和高分辨率的矛盾.本文通过设计一个参考波长为587 nm, 视场为60° (即± 30°),F数为F/8, 焦距为60 mm的双小凹光学成像系统, 并利用CODE V软件模拟仿真实现了5°和17°双视场高分辨率成像, 其余视场低分辨率成像, 并以32×32的采样分辨率计算了该系统的衍射效率, 验证了设计方法的科学性和准确性.With the advances in technology, how to solve the problem of contradiction between the large field of view and high resolution of images becomes one of the research focus of many scientific researchers. In this paper we present the concept of dually foveated imaging optical system, based on the traditional singly foveated imaging system which simulates the human eye, by introducing a reflective liquid crystal spatial light modulator for modulating the aberrations of two fields of a view, so improving the corresponding aberrations and achieving high-resolution image of the two different fields of view, while the remaining fields of the view are of low-resolution image. In this way it can solve the contradiction between the large field of view and high resolution image. In this paper, we design a dually foveated imaging optical system with the following parameters: reference wavelength is 587 nm, the field of view is 60° (i.e., ± 30°), F/8, the focal length is 60 mm. Simulation is conducted by CODE V, achieving a 5° and 17° dual field high-resolution image, and the remaining field being of low-resolution image; and calculation shows the high diffraction efficiency of the system with sampling resolution of 32 × 32, verifying the scientificness and accuracy of the design method.
-
Keywords:
- foveated image /
- spatial light modulator /
- high-resolution image /
- dual fields
[1] Hua H, Liu S 2008 Appl. Opt. 47 317
[2] Jianwei Yang, Miami US Patent 7973834 [2011-05-07]
[3] Wang Y Q, Liu T G 2007 Journal of Jiaozuo University 3 82 (in Chinese) [王永强, 刘太刚 2007 焦作大学学报 3 82]
[4] Efron U 1995 Spatial Light Modulator Technology: Materials, Devices and Applications (New York: Marcel Dekker Inc)p96
[5] Martinez T, Wick D V, Restaino S R 2001 Opt. Express 8 555
[6] George Curatu, James Harvey E 2009 Ph. D. Dissertation (US: University of Central Florida)
[7] Beeckman J, Neyts K, Pieter Vanbrabant J M 2011 Opt.Engineering. 50 081201
[8] Love G D 1997 Appl. Opt. 36 1517
[9] Cai D M, Ling N, Jiang W H 2008 Acta Phys. Sin. 57 897 (in Chinese) [蔡冬梅, 凌宁, 姜文汉 2008 物理学报 57 897]
[10] Liu Y, Cao Z, Li D, Mu Q 2006 Opt. Engineering 45 128001
[11] Liu J G, Li Y, Li L, Huang Y F 2009 Chin. Phys.B 18 565
[12] Peng Q Q 2011 Dissertatio M Sn (Beijing: Beijing Insititute of Technology) (in Chinese) [彭晴晴 2011 硕士学位论文(北京: 北京理工大学)]
-
[1] Hua H, Liu S 2008 Appl. Opt. 47 317
[2] Jianwei Yang, Miami US Patent 7973834 [2011-05-07]
[3] Wang Y Q, Liu T G 2007 Journal of Jiaozuo University 3 82 (in Chinese) [王永强, 刘太刚 2007 焦作大学学报 3 82]
[4] Efron U 1995 Spatial Light Modulator Technology: Materials, Devices and Applications (New York: Marcel Dekker Inc)p96
[5] Martinez T, Wick D V, Restaino S R 2001 Opt. Express 8 555
[6] George Curatu, James Harvey E 2009 Ph. D. Dissertation (US: University of Central Florida)
[7] Beeckman J, Neyts K, Pieter Vanbrabant J M 2011 Opt.Engineering. 50 081201
[8] Love G D 1997 Appl. Opt. 36 1517
[9] Cai D M, Ling N, Jiang W H 2008 Acta Phys. Sin. 57 897 (in Chinese) [蔡冬梅, 凌宁, 姜文汉 2008 物理学报 57 897]
[10] Liu Y, Cao Z, Li D, Mu Q 2006 Opt. Engineering 45 128001
[11] Liu J G, Li Y, Li L, Huang Y F 2009 Chin. Phys.B 18 565
[12] Peng Q Q 2011 Dissertatio M Sn (Beijing: Beijing Insititute of Technology) (in Chinese) [彭晴晴 2011 硕士学位论文(北京: 北京理工大学)]
计量
- 文章访问数: 6501
- PDF下载量: 554
- 被引次数: 0