搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形谐振器的远场超分辨率扫描成像

高强 李小秋 周志鹏 孙磊

引用本文:
Citation:

基于分形谐振器的远场超分辨率扫描成像

高强, 李小秋, 周志鹏, 孙磊

Far-field super-resolution scanning imaging based on fractal resonator

Gao Qiang, Li Xiao-Qiu, Zhou Zhi-Peng, Sun Lei
PDF
HTML
导出引用
  • 为突破传统衍射极限实现远场超分辨率扫描成像, 提出一种基于分形谐振器的微结构阵列用于目标远场超分辨率扫描成像. 该阵列基于局域模谐振原理, 将目标的超分辨率信息包含在频谱中传播到远场, 可在远场通过频谱信息判断目标所在位置, 从而不借助于格林函数实现超分辨率实时成像, 成像过程简单方便. 基于分形谐振器的设计使阵列具有多频点工作的特点, 最终实现了λ/10的超分辨率成像. 结合分形谐振器一阶谐振和三阶谐振的特点, 提出一种可有效提升成像效率的新型的扫描成像方法.
    The resolution of traditional far-field imaging system is generally restricted by half of the wavelength of incident light due to the diffraction limit. The more specific reason is that evanescent waves carrying sub-wavelength information cannot propagate in the far field and make no contribution to the imaging. However, higher imaging resolution is required in practical applications. To realize the far-field super-resolution imaging, the imaging system should be able to collect both propagating waves and evanescent waves. Many designs have been proposed to solve this issue. In 2007, a far-field superlens was proposed by Liu et al. (Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403) to realize far-field super-resolution in optical range, which consisted of a silver film and a nanoscale grating coupler. The silver film was used to amplify the evanescent waves, which were then converted into propagating waves by the sub-wavelength gratings. However, the special material properties limit the freedom of design. In microwave band, the incident components can be converted into Bloch modes by the resonant metalens, which consists of subwavelength resonators, and then be radiated to far field. Nevertheless, Green function between antenna and target is necessary, which is difficult to obtain due to the complex and even time-dependent imaging environment in practical applications, especially for super-resolution imaging system. It has been demonstrated in recent research that frequency information can be associated with spatial information of imaging target by localization resonant modes. Therefore, super-resolution imaging can be realized based on frequency information, without using Green function. Thus, a novel microstructure array is proposed to realize the far-field super-resolution scanning imaging based on a fractal resonator. The fractal resonator can work at several frequencies because of the self-similarity, which provides higher selectivity according to practical conditions. Several working statuses can be obtained for the resonator by adding photoconductive semiconductor switches, which are controlled by laser. On account of localization mode resonance, the array can realize the conversion between evanescent waves and propagating waves. Then with the help of antennas in the far-field to receive the frequency information, the location of imaging source can be confirmed according to the spectrum. Then by using the magnitude of resonant peak, sub-wavelength image can be reconstructed without using Green function. To verify the super-resolution scanning imaging characteristics of the array, an imaging simulation of “laugh face”-shaped target is performed. The image is reconstructed very well and the resolution determined by the period of the array is 20 mm, corresponding to λ/10. In view of the particularity of proposed fractal resonator, a novel scanning method is proposed. By combining the first and the third resonance, the imaging efficiency can be well improved compared with by the traditional point-by-point scanning method.
      通信作者: 高强, gaoqiang512@foxmail.com
      Corresponding author: Gao Qiang, gaoqiang512@foxmail.com
    [1]

    Merlin R 2007 Science 317 927Google Scholar

    [2]

    Grbic A, Jiang L, Merlin R 2008 Science 320 511Google Scholar

    [3]

    Grbic A, Merlin R 2008 IEEE Trans. Antennas Propag. 56 3159Google Scholar

    [4]

    祝生祥 2000 光学仪器 22 34Google Scholar

    Zhu S X 2000 Opt. Instrum. 22 34Google Scholar

    [5]

    波恩M, 沃尔夫E 著 (杨葭荪 译) 1999 光学原理 (北京: 电子工业出版社) 第342−427页

    Born M, Wolf E (translated by Yang J S) 1999 Principles of Optics (Beijing: Electronic Industry Press) pp342−427 (in Chinese)

    [6]

    Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651Google Scholar

    [7]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [8]

    Pendry J B, Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345Google Scholar

    [9]

    Nicholas F, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [10]

    杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣 2012 物理学报 61 164101Google Scholar

    Yang C, Zhang H X, Wang H X, Xu N, Xu Y Y, Huang L Y, Zhang K X 2012 Acta Phys. Sin. 61 164101Google Scholar

    [11]

    Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403Google Scholar

    [12]

    Zhang Z Y, Du J L, Guo Y K, Niu X J, Li M, Luo X G, Du C L 2009 Chin. Phys. Lett. 26 014211Google Scholar

    [13]

    Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901Google Scholar

    [14]

    Lemoult F, Fink M, Lerosey G 2011 Waves Random and Complex Media 21 614Google Scholar

    [15]

    Ourir A, Lerosey G, Lemoult F, Fink M, de Rosny J 2012 Appl. Phys. Lett. 101 111102Google Scholar

    [16]

    Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antennas Propag. 63 5586Google Scholar

    [17]

    Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507Google Scholar

    [18]

    高强 2018 博士学位论文 (成都: 电子科技大学)

    Gao Q 2018 Ph. D. Dessertation (Chengdu: University of Electronics Science and Technology of China) (in Chinese)

    [19]

    龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar

    Gong Z S, Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar

    [20]

    周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101Google Scholar

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar

    [21]

    Yao J, Ye Y H 2012 Chin. Phys. Lett. 29 047802Google Scholar

    [22]

    Wang P W, Li W, Wang C L, Bo Z W, Gong W L 2018 Chin. Phys. B 27 074202Google Scholar

    [23]

    Duan J H, Chen R K, Chen J N 2017 Chin. Phys. B 26 117802Google Scholar

    [24]

    Wang H, Brandl D W, Le F, Nordlander P, Halas N J 2006 Nano Lett. 6 827Google Scholar

    [25]

    Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Rep. 5 11131Google Scholar

    [26]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [27]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar

  • 图 1  (a)分形谐振器单元的物理尺寸; (b)开关设置模型

    Fig. 1.  (a) Physical dimensions of fractal resonator cell; (b) switch setup model.

    图 2  分形谐振器单元远场频谱仿真模型及两种工作状态下的远场频谱 (a)远场频谱仿真模型; (b)两种工作状态下的远场频谱

    Fig. 2.  Far-field spectrum simulation setup of fractal resonator cell and simulated far-field spectra of two working status: (a) Far-field spectrum simulation setup; (b) far-field spectra of two working status.

    图 3  一阶谐振的两种工作状态设置

    Fig. 3.  Two working status setup of the first resonance.

    图 4  一阶谐振两种工作状态的远场频谱

    Fig. 4.  Far-field spectra of the first resonance at two working status.

    图 5  三阶谐振的两种工作状态设置及远场频谱 (a)工作状态设置; (b)远场频谱

    Fig. 5.  Two working status and far-field spectra of the third resonance: (a) Working status setup; (b) far-field spectra.

    图 6  分形微结构阵列编号及成像模型设置 (a)编号模型; (b)成像模型

    Fig. 6.  Number of fractal microstructure array and imaging model: (a) Number model; (b) imaging model.

    图 7  分形微结构阵列远场超分辨率扫描成像结果 (a) 8 × 8像素点成像结果; (b) 16 × 16像素点成像结果

    Fig. 7.  Far-field super-resolution scanning imaging results of microstructure array: (a) 8 × 8 pixel imaging result; (b) 16 × 16 pixel imaging result

  • [1]

    Merlin R 2007 Science 317 927Google Scholar

    [2]

    Grbic A, Jiang L, Merlin R 2008 Science 320 511Google Scholar

    [3]

    Grbic A, Merlin R 2008 IEEE Trans. Antennas Propag. 56 3159Google Scholar

    [4]

    祝生祥 2000 光学仪器 22 34Google Scholar

    Zhu S X 2000 Opt. Instrum. 22 34Google Scholar

    [5]

    波恩M, 沃尔夫E 著 (杨葭荪 译) 1999 光学原理 (北京: 电子工业出版社) 第342−427页

    Born M, Wolf E (translated by Yang J S) 1999 Principles of Optics (Beijing: Electronic Industry Press) pp342−427 (in Chinese)

    [6]

    Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651Google Scholar

    [7]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [8]

    Pendry J B, Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345Google Scholar

    [9]

    Nicholas F, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [10]

    杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣 2012 物理学报 61 164101Google Scholar

    Yang C, Zhang H X, Wang H X, Xu N, Xu Y Y, Huang L Y, Zhang K X 2012 Acta Phys. Sin. 61 164101Google Scholar

    [11]

    Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403Google Scholar

    [12]

    Zhang Z Y, Du J L, Guo Y K, Niu X J, Li M, Luo X G, Du C L 2009 Chin. Phys. Lett. 26 014211Google Scholar

    [13]

    Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901Google Scholar

    [14]

    Lemoult F, Fink M, Lerosey G 2011 Waves Random and Complex Media 21 614Google Scholar

    [15]

    Ourir A, Lerosey G, Lemoult F, Fink M, de Rosny J 2012 Appl. Phys. Lett. 101 111102Google Scholar

    [16]

    Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antennas Propag. 63 5586Google Scholar

    [17]

    Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507Google Scholar

    [18]

    高强 2018 博士学位论文 (成都: 电子科技大学)

    Gao Q 2018 Ph. D. Dessertation (Chengdu: University of Electronics Science and Technology of China) (in Chinese)

    [19]

    龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar

    Gong Z S, Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar

    [20]

    周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101Google Scholar

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar

    [21]

    Yao J, Ye Y H 2012 Chin. Phys. Lett. 29 047802Google Scholar

    [22]

    Wang P W, Li W, Wang C L, Bo Z W, Gong W L 2018 Chin. Phys. B 27 074202Google Scholar

    [23]

    Duan J H, Chen R K, Chen J N 2017 Chin. Phys. B 26 117802Google Scholar

    [24]

    Wang H, Brandl D W, Le F, Nordlander P, Halas N J 2006 Nano Lett. 6 827Google Scholar

    [25]

    Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Rep. 5 11131Google Scholar

    [26]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [27]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar

  • [1] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [2] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [3] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正. 物理学报, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [4] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [5] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [6] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [7] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [8] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [9] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] 杨丹青, 王莉, 王新龙. 基于周期结构负反射的远场增强成像研究. 物理学报, 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [11] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究. 物理学报, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [12] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [13] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究. 物理学报, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [14] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究. 物理学报, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [15] 张锐, 王建军, 粟敬钦, 刘兰琴, 丁磊, 唐军, 刘华, 景峰, 张小民. 基于波导相位调制器的光谱色散平滑技术实验研究. 物理学报, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [16] 丁 莉, 刘代中, 高妍琦, 朱宝强, 朱 俭, 彭增云, 朱健强, 俞立钧. 高功率激光装置光束准直系统新型远场监测技术. 物理学报, 2008, 57(9): 5713-5717. doi: 10.7498/aps.57.5713
    [17] 李国俊, 康学亮, 李永平. 二维蜂窝格子光子晶体的远场成像特性及界面对成像质量的影响. 物理学报, 2007, 56(11): 6403-6407. doi: 10.7498/aps.56.6403
    [18] 左言磊, 魏晓峰, 朱启华, 刘红婕, 王 逍, 黄 征, 郭 仪, 应纯同. 基于配对误差补偿方法的拼接光栅压缩池理论研究. 物理学报, 2007, 56(9): 5227-5232. doi: 10.7498/aps.56.5227
    [19] 左言磊, 魏晓峰, 朱启华, 王 逍, 刘红婕, 黄 征, 郭 仪, 应纯同. 单程拼接光栅压缩池系统中光栅缝隙的衍射效应. 物理学报, 2007, 56(10): 5784-5789. doi: 10.7498/aps.56.5784
    [20] 江秀娟, 周申蕾, 林尊琪, 朱 俭. 光谱色散后的相位调制光束衍射特性研究. 物理学报, 2006, 55(9): 4595-4601. doi: 10.7498/aps.55.4595
计量
  • 文章访问数:  6493
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 修回日期:  2019-09-26
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回