-
In this paper, a propagation matrix method for lossy layered medium with conductive interfaces is presented. Firstly, on the basis of phase matching principle, an approach to calculating the real and imaginary part of wave vector in a lossy layered medium is given for the case of oblique incident plane electromagnetic wave. Since the direction of real and imaginary part of wave vector are different, the plane wave propagating in lossy dielectric layers is inhomogeneous, which extends the traditional propagation matrix method and makes it suitable for the complex lossy medium. Then, the propagation matrix across graphene interface is deduced by using the electromagnetic field boundary conditions, and the analytical expression of the reflection and transmission coefficient for “infinite thin” graphene layer are given. Finally, the propagation matrix of lossy layered medium with conductive interface is obtained by embedding graphene interface into the layered medium, which can be used for fast analyzing the reflection, transmission and propagation of plane wave in composite structure of layered medium and conductive interface. The validity of the proposed method is demonstrated by calculating the single-layered shielding effectiveness of grapheme. The effects of graphene coating on the reflection, transmission and absorption of plane wave in half-space medium and one-dimensional photonic crystal are also investigated. The results show that the graphene layer can enhance surface reflection and optical absorption.
-
Keywords:
- graphene /
- lossy stratified media /
- propagation matrix
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666Google Scholar
[2] Geim A K 2009 Science 324 1530Google Scholar
[3] Sensale-Rodriguez B, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Commun. 3 780Google Scholar
[4] Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar
[5] Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408Google Scholar
[6] Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518Google Scholar
[7] Fu M X, Zhang Y 2013 JECT 11 352
[8] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936
[9] Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304Google Scholar
[10] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 物理学报 61 047803Google Scholar
Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803Google Scholar
[11] Zhu X L, Yan W, Jepsen P U, Hansen O, Mortensen N A Xiao S S 2013 Appl. Phys. Lett. 102 131101Google Scholar
[12] Pomar J L G, Alexey Y N, Luis M M 2013 ACS Nano 7 4988Google Scholar
[13] Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401Google Scholar
[14] Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438Google Scholar
[15] Tian Y C, Jia W, Ren P W, Fan C Z 2018 Chin. Phys. B 27 124205Google Scholar
[16] Jia W, Ren P W, Fan C Z, Tian Y C 2019 Chin. Phys. B 28 026102Google Scholar
[17] Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar
[18] Peres N M R, Bludov Y V 2013 EPL 101 58002Google Scholar
[19] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803Google Scholar
Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803Google Scholar
[20] Zhang H J, Zheng G G, Chen Y Y 2018 Chin. Phys. Lett. 35 038102Google Scholar
[21] Lovat G 2012 IEEE Trans. Electromagn. Compat. 54 101Google Scholar
[22] 葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第32, 56−65页
Ge D B, Wei B 2011 Electromagnetic Wave Theory (Beijing: Science Press) pp32, 56−65 (in Chinese)
[23] George W H 2008 J. Appl. Phys. 103 064302Google Scholar
[24] 孙旺, 李粮生, 张景, 殷红成 2018 雷达学报 7 67Google Scholar
Sun W, Li L S, Zhang J, Yin H C 2018 J. Radars 7 67Google Scholar
-
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666Google Scholar
[2] Geim A K 2009 Science 324 1530Google Scholar
[3] Sensale-Rodriguez B, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Commun. 3 780Google Scholar
[4] Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar
[5] Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408Google Scholar
[6] Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518Google Scholar
[7] Fu M X, Zhang Y 2013 JECT 11 352
[8] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936
[9] Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304Google Scholar
[10] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 物理学报 61 047803Google Scholar
Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803Google Scholar
[11] Zhu X L, Yan W, Jepsen P U, Hansen O, Mortensen N A Xiao S S 2013 Appl. Phys. Lett. 102 131101Google Scholar
[12] Pomar J L G, Alexey Y N, Luis M M 2013 ACS Nano 7 4988Google Scholar
[13] Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401Google Scholar
[14] Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438Google Scholar
[15] Tian Y C, Jia W, Ren P W, Fan C Z 2018 Chin. Phys. B 27 124205Google Scholar
[16] Jia W, Ren P W, Fan C Z, Tian Y C 2019 Chin. Phys. B 28 026102Google Scholar
[17] Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar
[18] Peres N M R, Bludov Y V 2013 EPL 101 58002Google Scholar
[19] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803Google Scholar
Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803Google Scholar
[20] Zhang H J, Zheng G G, Chen Y Y 2018 Chin. Phys. Lett. 35 038102Google Scholar
[21] Lovat G 2012 IEEE Trans. Electromagn. Compat. 54 101Google Scholar
[22] 葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第32, 56−65页
Ge D B, Wei B 2011 Electromagnetic Wave Theory (Beijing: Science Press) pp32, 56−65 (in Chinese)
[23] George W H 2008 J. Appl. Phys. 103 064302Google Scholar
[24] 孙旺, 李粮生, 张景, 殷红成 2018 雷达学报 7 67Google Scholar
Sun W, Li L S, Zhang J, Yin H C 2018 J. Radars 7 67Google Scholar
计量
- 文章访问数: 7373
- PDF下载量: 84
- 被引次数: 0