搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁偏置各向异性石墨烯界面的传播矩阵

王飞 魏兵

引用本文:
Citation:

电磁偏置各向异性石墨烯界面的传播矩阵

王飞, 魏兵

Propagation matrix for electromagnetic interaction through electrostatically and magnetostatically biased graphene sheet

Wang Fei, Wei Bing
PDF
HTML
导出引用
  • 基于电磁场边界条件和相位匹配, 推导出电、磁偏置下呈各向异性的石墨烯导电界面的传播矩阵, 并进一步给出各向异性石墨烯界面的反透射系数解析解; 该传播矩阵耦合了基本的横电波和横磁波极化, 并包括偏置电、磁场的影响. 将跨石墨烯界面传播矩阵嵌入各向同性分层介质传播矩阵, 获得的新传播矩阵可用于解析分析平面电磁波以任意角度入射含各向异性石墨烯界面层状介质时的传播和反透射特性, 并且为分层介质与各向异性导电界面复合结构的相关分析和设计提供了一种非常简单的工具.
    The reflection and transmission of plane electromagnetic waves on monolayer graphene are studied theoretically in this paper. From an electromagnetic point of view, monolayer graphene is described as an “infinitely thin” graphene sheet characterized by a surface conductivity, and based on a microscopic quantum dynamical approach, the graphene sheet becomes anisotropic in the presence of both an electrostatic and a magnetic bias. In this work, starting from boundary conditions and phase-matching conditions, the propagation matrix for the analysis of the interaction between an electromagnetic field and thin graphene sheet which is biased electrostatically and magnetostatically, and then characterized by an anisotropic conductivity, is derived. Furthermore, the analytical solutions of co- and cross-polarization reflective and transmittance coefficients through an anisotropic graphene planar surface are obtained from the proposal matrix above, which couples the fundamental transverse electric (TE) polarization and transverse magnetic (TM) polarization and includes the possible effects of electrostatic and/or magnetostatic bias. In conclusion, the cross-polarization reflective coefficient of TE wave and that of TM wave are equal, and their cross-polarization transmittance coefficients have opposite phase. Finally, a new propagation matrix for stratified medium containing anisotropic graphene interfaces is deduced by embedding the matrix across graphene sheet mentioned above into the traditional propagation matrix for isotropic stratified medium. The proposed new matrix can be used to investigate the propagation properties of plane wave in a complex structure of layered medium and anisotropic conductivity interfaces (including graphene sheet) analytically and quickly, and represents a very simple tool for the relevant analysis and design.
      通信作者: 王飞, wfei79@163.com
    • 基金项目: 国家自然科学基金(批准号: 61401344, 61901324) 和高等学校学科创新引智计划(批准号: B17035)资助的课题
      Corresponding author: Wang Fei, wfei79@163.com
    • Funds: Project supported by the National Natural Scientific Foundation of China (Grant Nos. 61401344, 61901324) and the 111 Project (Grant No. B17035)
    [1]

    Lovat G 2012 IEEE Trans. Electromagn. Compat. 54 101Google Scholar

    [2]

    Geim A K 2009 Science 324 1530Google Scholar

    [3]

    Das T, Sharma B K, Katiyar A K, Ahn J H 2018 J. Semicond. 39 011007Google Scholar

    [4]

    Nimbalkar A, Kim H 2020 Nano-Micro Lett. 12 126Google Scholar

    [5]

    Moshizi S A, Azadi S, Belford A, Razmjou A, Wu S, Han Z J, Asadnia M 2020 Nano-Micro Lett. 12 109Google Scholar

    [6]

    Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G, Zhang W L 2020 Chin. Phys. B 29 077803Google Scholar

    [7]

    Chaea M S, Leea T H, Sona K R, Parka T H, Hwangb K S, Kim T G 2020 J Mater. Sci. Technol. 40 72Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsove A A 2005 Nature 438 197Google Scholar

    [10]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [11]

    Zhang Y, Small J P, Pontius W V, Kim P 2005 Appl. Phys. Lett. 86 073104Google Scholar

    [12]

    Slepyan G Y, Maksimenko S A, Lakhtakia A, Yevtushenko O, Gusakov A V 1999 Phys. Rev. B 60 17136Google Scholar

    [13]

    Hanson G W 2008 J. Appl. Phys. 103 064302Google Scholar

    [14]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222Google Scholar

    [15]

    Hanson G W 2008 IEEE Trans. Antennas Propag. 56 747Google Scholar

    [16]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第5, 6, 39, 40, 56−73页

    Ge D B, Wei B 2011 Electromagnetic wave theory (Beijing: Science Press) pp5, 6, 39, 40, 56−73 (in Chinese)

    [17]

    王飞, 魏兵 2019 物理学报 68 244101Google Scholar

    Wang F, Wei B 2019 Acta Phys. Sin. 68 244101Google Scholar

    [18]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411Google Scholar

    [19]

    Gusynin V P, Sharapov S G, Carbotte J P 2006 Phys. Rev. Lett. 96 256802Google Scholar

    [20]

    Peres N M R, Guiner F, Castro Neto A H 2006 Phys. Rev. B 73 125411Google Scholar

    [21]

    Ziegler K 2007 Phys. Rev. B 75 233407Google Scholar

    [22]

    George W H 2008 Journal of Applied Physics 103 064302

    [23]

    Balanis C A 1989 Advanced Engineering Electromagnetics (New York: Wiley) pp168−170

  • 图 1  “无限薄”石墨烯层

    Fig. 1.  “Infinitely thin” graphene sheet.

    图 2  石墨烯化学势${\mu _{\rm{c}}}\left( {{E_{{\rm{bias}}}}} \right)$与偏置电场${E_{{\rm{bias}}}}$的关系

    Fig. 2.  Graphical representation of the relation between the chemical potential ${\mu _{\rm{c}}}\left( {{E_{{\rm{bias}}}}} \right)$ and the electrostatic bias field ${E_{{\rm{bias}}}}$.

    图 3  层状介质

    Fig. 3.  Stratified medium.

    图 4  石墨烯电导率张量元素及屏蔽效率随偏置磁场变化 (a) 电导率张量元素; (b) 屏蔽效率

    Fig. 4.  Diagonal and off-diagonal components of the graphene conductivity tensor and SE as a function of the applied magnetostatic bias: (a) Components of the tensor; (b) SE.

    图 5  透射波极化状态参量$\tau, \varepsilon $与偏置磁场、偏置电场关系 (a) 偏置电场${E_{{\rm{bias}}}} = 1\;{\rm{V}} \cdot {\rm{n}}{{\rm{m}}^{{{ - }}1}}$; (b) 偏置磁场${B_{{\rm{bias}}}} = 0.5\;{\rm{T}}$

    Fig. 5.  Angles $\tau, \;\varepsilon $ describing the polarization state of the transmitted wave as functions of the magnetostatic bias and the electrostatic bias: (a) ${E_{{\rm{bias}}}} = 1\;{\rm{V}} \cdot {\rm{n}}{{\rm{m}}^{{{ - }}1}}$; (b) ${B_{{\rm{bias}}}} = 0.5\;{\rm{T}}$.

    图 6  各向异性石墨烯界面的反透射及屏蔽效率随频率变化关系 (a) 同极化反透射系数模值; (b) 交叉极化反透射系数模值; (c) 交叉极化反透射系数相位; (d) 屏蔽效率

    Fig. 6.  Reflection/transmission and the SE of an isotropic graphene sheet as functions of frequency: (a) Modulus of co-polarization reflective and transmittance coefficients; (b) modulus of cross-polarization reflective and transmittance coefficients; (c) phase of cross-polarization reflective and transmittance coefficients; (d) SE.

    图 7  Si/SiO2周期层状结构

    Fig. 7.  Si/SiO2 periodic layered structure.

    图 8  各向异性石墨烯界面位于不同位置时层状结构对垂直入射波的反透射随频率变化关系 (a) 反射系数模值; (b) 透射系数模值

    Fig. 8.  Reflection/transmission of normally incident waves from a periodic layered structure with an isotropic graphene at different interface as functions of frequency: (a) Modulus of reflective coefficient; (b) modulus of transmittance coefficient.

    图 9  各向异性石墨烯界面位于上表面时层状结构对斜入射波的反透射随频率变化关系 (a) 反射系数模值; (b) 透射系数模值

    Fig. 9.  Reflection/transmission of oblique incident waves from a periodic layered structure with an isotropic graphene surface as functions of frequency: (a) Modulus of reflective coefficient; (b) modulus of transmittance coefficient.

  • [1]

    Lovat G 2012 IEEE Trans. Electromagn. Compat. 54 101Google Scholar

    [2]

    Geim A K 2009 Science 324 1530Google Scholar

    [3]

    Das T, Sharma B K, Katiyar A K, Ahn J H 2018 J. Semicond. 39 011007Google Scholar

    [4]

    Nimbalkar A, Kim H 2020 Nano-Micro Lett. 12 126Google Scholar

    [5]

    Moshizi S A, Azadi S, Belford A, Razmjou A, Wu S, Han Z J, Asadnia M 2020 Nano-Micro Lett. 12 109Google Scholar

    [6]

    Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G, Zhang W L 2020 Chin. Phys. B 29 077803Google Scholar

    [7]

    Chaea M S, Leea T H, Sona K R, Parka T H, Hwangb K S, Kim T G 2020 J Mater. Sci. Technol. 40 72Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsove A A 2005 Nature 438 197Google Scholar

    [10]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [11]

    Zhang Y, Small J P, Pontius W V, Kim P 2005 Appl. Phys. Lett. 86 073104Google Scholar

    [12]

    Slepyan G Y, Maksimenko S A, Lakhtakia A, Yevtushenko O, Gusakov A V 1999 Phys. Rev. B 60 17136Google Scholar

    [13]

    Hanson G W 2008 J. Appl. Phys. 103 064302Google Scholar

    [14]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222Google Scholar

    [15]

    Hanson G W 2008 IEEE Trans. Antennas Propag. 56 747Google Scholar

    [16]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第5, 6, 39, 40, 56−73页

    Ge D B, Wei B 2011 Electromagnetic wave theory (Beijing: Science Press) pp5, 6, 39, 40, 56−73 (in Chinese)

    [17]

    王飞, 魏兵 2019 物理学报 68 244101Google Scholar

    Wang F, Wei B 2019 Acta Phys. Sin. 68 244101Google Scholar

    [18]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411Google Scholar

    [19]

    Gusynin V P, Sharapov S G, Carbotte J P 2006 Phys. Rev. Lett. 96 256802Google Scholar

    [20]

    Peres N M R, Guiner F, Castro Neto A H 2006 Phys. Rev. B 73 125411Google Scholar

    [21]

    Ziegler K 2007 Phys. Rev. B 75 233407Google Scholar

    [22]

    George W H 2008 Journal of Applied Physics 103 064302

    [23]

    Balanis C A 1989 Advanced Engineering Electromagnetics (New York: Wiley) pp168−170

  • [1] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [2] 王飞, 魏兵. 含石墨烯分界面有耗分层介质的传播矩阵. 物理学报, 2019, 68(24): 244101. doi: 10.7498/aps.68.20190823
    [3] 王飞, 魏兵. 分层有耗手征介质中斜入射电磁波的传播矩阵. 物理学报, 2017, 66(6): 064101. doi: 10.7498/aps.66.064101
    [4] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点. 物理学报, 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [5] 李雪萍, 纪奕才, 卢伟, 方广有. 车载探地雷达信号在分层介质中的散射特性. 物理学报, 2014, 63(4): 044201. doi: 10.7498/aps.63.044201
    [6] 齐有政, 黄玲, 张建国, 方广有. 层状介质上时空展源瞬变电磁响应的计算方法研究. 物理学报, 2013, 62(23): 234201. doi: 10.7498/aps.62.234201
    [7] 张宇, 张晓娟, 方广有. 大尺度分层介质电特性参数的反演方法研究. 物理学报, 2013, 62(4): 044204. doi: 10.7498/aps.62.044204
    [8] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率. 物理学报, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [9] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究. 物理学报, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [10] 洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达. 磁偶极和电四极在磁各向异性介质中的辐射功率. 物理学报, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [11] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究. 物理学报, 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [12] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [13] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [14] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [15] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析. 物理学报, 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
    [16] 郑奎松, 葛德彪. 周期性分层介质高反射区范围的分析与估计. 物理学报, 2006, 55(6): 2789-2793. doi: 10.7498/aps.55.2789
    [17] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [18] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射. 物理学报, 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [19] 于美文, 张存林. 光致各向异性记录介质偏振全息图的透射矩阵. 物理学报, 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
    [20] 李义兵, 李少平. 各向异性磁介质中的静磁交换模. 物理学报, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
计量
  • 文章访问数:  3999
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 修回日期:  2020-09-03
  • 上网日期:  2020-12-20
  • 刊出日期:  2021-01-05

/

返回文章
返回