搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维有限元方法研究石墨烯环中磁等离激元

王伟华

引用本文:
Citation:

二维有限元方法研究石墨烯环中磁等离激元

王伟华

Study of magnetoplasmons in graphene rings with two-dimensional finite element method

Wang Wei-Hua
PDF
HTML
导出引用
  • 石墨烯等离激元是决定石墨烯光学性质的重要元激发, 拥有一系列优异的特性, 其通过外置电场的动态可调性最引人注目; 石墨烯具有很强的磁场响应(如室温观测的量子霍尔效应), 因而磁场可作为一个新的调控自由度, 形成的准粒子叫作石墨烯磁等离激元. 鉴于石墨烯的二维属性, 石墨烯磁等离激元的研究大多采用三维近似, 即将石墨烯等效成厚度很薄的三维块材, 该处理方案需消耗大量的计算资源. 本文在准静态近似下, 围绕库仑定律和电荷守恒定律, 构建了高效的二维有限元方法, 自洽地求解石墨烯面内的积分微分方程, 并提出本征值损失谱表征准粒子的激发. 利用二维有限元方法, 探讨了4类石墨烯环中磁等离激元的激发; 最低阶的偶极共振都支持磁等离激元的对称劈裂, 在孔很小时, 其对模式劈裂的影响可忽略, 但当孔的尺寸变大时, 内外边界的相互作用将抑制模式劈裂, 并最终导致其消失.
    Graphene plasmons are important collective excitations in graphene, which play a key role in determining the optical properties of graphene. They have quite lots of unique features in comparison with classical plasmons in noble metals. Of them, the active tunability is the most attractive, which is realized by external gating (equivalently electric field). As is well known, graphene also has strong magnetic response (e.g. room temperature quantum Hall effect), so magnetic field can act as another degree of freedom for actively tuning graphene plasmons, with the new quasi particles being so-called graphene magneto-plasmons. Because of the two-dimensional nature of graphene, the numerical studies (or full wave simulations) of graphene magneto-plasmons are usually carried out through a three-dimensional approximation, e.g. treating two-dimensional graphene as a very thin three-dimensional film. Actually, this treatment takes quite some time and requires high memory consumption. Herein, starting from Coulomb law and charge conservation law, we propose an alternative numerical method, namely, two-dimensional finite element method, to solve this problem. All the calculations are now performed in two-dimensional graphene plane, and the usual three-dimensional approximation is not required. To characterize the excitations of graphene magneto-plasmons, the eigenvalue loss spectrum is introduced. Based on this method, graphene magneto-plasmons in graphene rings of four kinds are investigated. The strongest magneto-optic effect is observed in circular ring, which is consistent with its highest rotational symmetry. In all the rings, the lowest dipolar graphene magneto-plasmon always supports symmetric mode splitting, which can be further modified by the interaction between inner edge and outer edge of ring. As the hole size is very small, the edge current confined to the outer edge dominates, and that confined to the inner edge can be ignored; while increasing the hole size, the interaction between these two edges increases, which results in the reduction of the symmetric mode splitting; when the hole size is larger than a critical value, the symmetric mode splitting will disappear.
      通信作者: 王伟华, wh.wang@outlook.com
    • 基金项目: 国家自然科学基金(批准号: 12174440)资助的课题.
      Corresponding author: Wang Wei-Hua, wh.wang@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174440).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [4]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [5]

    Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U 2011 Nano Lett. 11 2219Google Scholar

    [6]

    Senanayake P, Hung C, Shapiro J, Lin A, Liang B, Williams B S, Huffaker D L 2011 Nano Lett. 11 5279Google Scholar

    [7]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [8]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar

    [9]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [10]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [11]

    Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726Google Scholar

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Phton. 3 388Google Scholar

    [13]

    Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044Google Scholar

    [14]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [15]

    周利, 王取泉 2019 物理学报 68 147301Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [16]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [17]

    Khurgin J B 2015 Nat. Nanotech. 10 2Google Scholar

    [18]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [19]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [20]

    Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J 2014 ACS Nano 8 834Google Scholar

    [21]

    Loa I, Syassen K, Monaco G, Vanko G, Krisch M, Hanfland M 2011 Phys. Rev. Lett. 107 086402Google Scholar

    [22]

    Fedyanin D Y, Yakubovsky D I, Kirtaev R V, Volkov V S 2016 Nano Lett. 16 326Google Scholar

    [23]

    Taliercio T, Biagioni P 2019 Nanophotonics 8 949Google Scholar

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [25]

    Frank I W, Tanenbaum D M, Van der Zande A M, McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558Google Scholar

    [26]

    Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N 2009 ACS Nano 3 3884Google Scholar

    [27]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Comps. Sci. Technol. 72 1459Google Scholar

    [28]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [29]

    Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [30]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [31]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [32]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [33]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297Google Scholar

    [34]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [35]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [36]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [37]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [39]

    Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [40]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Bnerjee S K, Colombo L 2014 Nat. Nanotechonl. 9 768Google Scholar

    [41]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318Google Scholar

    [43]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [44]

    Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T, MacDonald A H 2008 Phys. Rev. B 77 081411Google Scholar

    [45]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435Google Scholar

    [46]

    Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370Google Scholar

    [47]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541Google Scholar

    [48]

    de Abajo F J G 2014 ACS Photon. 1 135Google Scholar

    [49]

    Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [50]

    Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [51]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [52]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [53]

    Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802Google Scholar

    [54]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630Google Scholar

    [55]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nature Nanotechnol. 7 330Google Scholar

    [56]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [57]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [58]

    Eda G, Maier S A 2013 ACS Nano 7 5660Google Scholar

    [59]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899Google Scholar

    [60]

    Li Y, Li Z, Cheng C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [61]

    Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [62]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [63]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [64]

    Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192Google Scholar

    [65]

    Bolotin K L, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196Google Scholar

    [66]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693Google Scholar

    [67]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [68]

    Ferreira A, Rappoport T G, Cazalilla M A, Castro Neto A H 2014 Phys. Rev. Lett. 112 066601Google Scholar

    [69]

    Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, ven der Marel D, Kuzmenko A B 2011 Nat. Phys. 7 48Google Scholar

    [70]

    Fallahi A, Perruisseau-Carrier J 2012 Appl. Phys. Lett. 101 231605Google Scholar

    [71]

    Sounas D L, Skulason H S, Nguyen H V, Guermoune A, Slaj M, Szkopek T, Caloz C 2013 Appl. Phys. Lett. 102 191901Google Scholar

    [72]

    Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H 2013 Nat. Commun. 4 1841Google Scholar

    [73]

    Fetter A L 1985 Phys. Rev. B 32 7676Google Scholar

    [74]

    Mast D B, Dahm A J, Fetter A L 1985 Phys. Rev. Lett. 54 1706Google Scholar

    [75]

    Wu J, Hawrylak P, Eliasson G, Quinn J J 1986 Phys. Rev. B 33 7091Google Scholar

    [76]

    Armelles G, Cebollada A, Garcia-Martin A, Gonzalez M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [77]

    Poumirol J M, Liu P Q, Slipchenko T M, Nikitin A Y, Martin-Moreno L, Faist J, Kuzmenko A B 2017 Nat. Commun. 8 14626Google Scholar

    [78]

    Bychkov Y A, Martinez G 2008 Phys. Rev. B 77 125417Google Scholar

    [79]

    Berman O L, Gumbs G, Lozovik Y E 2008 Phys. Rev. B 78 085401Google Scholar

    [80]

    Wu J, Chen S, Roslyak O, Gumbs G, Lin M 2011 ACS Nano 5 1026Google Scholar

    [81]

    Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T H, Gaponenko I, Chen J, Kuzmenko A B 2012 Nano Lett. 12 2470Google Scholar

    [82]

    Ferreira A, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 85 205426Google Scholar

    [83]

    Mishchenko E G, Shyton A V, Silvestrov P G 2010 Phys. Rev. Lett. 104 156806Google Scholar

    [84]

    Petkovic I, Williams F I B, Bennaceur K, Portier F, Roche P, Glattli D C 2013 Phys. Rev. Lett. 110 016801Google Scholar

    [85]

    Sokolik A A, Lozovik 2019 Phys. Rev. B 100 125409Google Scholar

    [86]

    Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F 2012 Nano Lett. 12 3766Google Scholar

    [87]

    Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petkovic I, Glattli D C 2014 Phys. Rev. Lett. 113 266601Google Scholar

    [88]

    Lin X, Xu Y, Zhang B, Hao R, Chen H, Li E 2013 New J. Phys. 15 113003Google Scholar

    [89]

    Chamanara N, Sounas D, Caloz C 2013 Opt. Express 21 11248Google Scholar

    [90]

    Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljacic M, Fu L, Fang N 2016 Nat. Commun. 7 13486Google Scholar

    [91]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

    [92]

    Jin D, Christensen T, Soljacic M, Fang N, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [93]

    Wang W, Kinaret J M, Apell S P 2012 Phys. Rev. B 85 235444Google Scholar

    [94]

    Wang W, Apell S P, Kinaret J M 2012 Phys. Rev. B 86 125450Google Scholar

    [95]

    Jiao N, Kang S, Han K, Shen X, Wang W 2019 Phys. Rev. B 99 195447Google Scholar

    [96]

    Jiao N, Kang S, Han K, Shen X, Wang W 2021 Phys. Rev. B 103 085405Google Scholar

    [97]

    Wang N, Ding L, Wang W 2022 Phys. Rev. B 105 235435Google Scholar

    [98]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222Google Scholar

    [99]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 Phys. Rev. B 75 165407Google Scholar

    [100]

    Roldan R, Fuchs J, Goerbig M O 2009 Phys. Rev. B 80 085408Google Scholar

    [101]

    Morimoto T, Hatsugai Y, Aoki H 2009 Phys. Rev. Lett. 103 116803Google Scholar

    [102]

    Yang C, Peeters F M, Xu W 2010 Phys. Rev. B 82 205428Google Scholar

    [103]

    Wang W, Apell S P, Kinaret J M 2011 Phys. Rev. B 84 085423Google Scholar

    [104]

    Wang W, Christensen T, Jauho A P, Thygesen K S, Wubs M, Mortensen N A 2015 Sci. Rep. 5 9535Google Scholar

    [105]

    Wang W, Xiao S, Mortensen N A 2016 Phys. Rev. B 93 165407Google Scholar

    [106]

    Geuzaine C, Remacle J F 2009 Int. J. Numer. Meth. Eng. 79 1309Google Scholar

  • 图 1  石墨烯圆环(a)、方环(b)、方孔圆环(c)、圆孔方环(d)网格划分示意图, 环的直径或边长均为100 nm, 孔的直径或边长均为50 nm

    Fig. 1.  Schematic diagrams of mesh generation for graphene circular ring (a), square ring (b), circular ring with square hole (c), and square ring with circular hole (d). The diameteror side length of ring is 100 nm, and that of hole is 50 nm.

    图 2  石墨烯圆盘的偶极GMP谱线, 数据分别来自2DFEM (a)和3DFEM (b), 其中虚线标记了蓝色曲线半峰的高度

    Fig. 2.  Dipolar GMP spectra in graphene disk, obtained from 2DFEM (a) and 3DFEM (b), respectively. The dashed lines mark the position of half maximum of blue curves.

    图 3  石墨烯圆盘(a)和方块(b)的本征值损失谱, 圆盘和方块的直径与边长均为100 nm

    Fig. 3.  Eigenvalue loss spectra of graphene disk (a) and graphene square (b). The diameter of disk and the side length of square are both 100 nm.

    图 4  4类石墨烯环的本征值损失谱, 椭圆标记了发生SMS的GMP模式

    Fig. 4.  Eigenvalue loss spectra of graphene rings of 4 kinds. The ellipses mark the symmetric mode splitting of those GMPs.

    图 5  4类石墨烯环中偶极GMP模式频率随孔尺寸的演化, 圆圈和菱形分别代表$ {\omega }_{+} $$ {\omega }_{-} $模式

    Fig. 5.  Resonance frequencies of dipolar GMP as a function of the size of inner hole. The circles and rhombuses are the results of $ {\omega }_{+} $ and $ {\omega }_{-} $, respectively.

    图 6  4类石墨烯环中偶极GMP的电势分布图, 孔的尺寸为60 nm

    Fig. 6.  Potential distribution of the dipolar GMP in graphene rings of four kinds. The diameter or side length of each ring is 60 nm.

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [4]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [5]

    Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U 2011 Nano Lett. 11 2219Google Scholar

    [6]

    Senanayake P, Hung C, Shapiro J, Lin A, Liang B, Williams B S, Huffaker D L 2011 Nano Lett. 11 5279Google Scholar

    [7]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [8]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar

    [9]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [10]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [11]

    Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726Google Scholar

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Phton. 3 388Google Scholar

    [13]

    Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044Google Scholar

    [14]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [15]

    周利, 王取泉 2019 物理学报 68 147301Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [16]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [17]

    Khurgin J B 2015 Nat. Nanotech. 10 2Google Scholar

    [18]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [19]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [20]

    Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J 2014 ACS Nano 8 834Google Scholar

    [21]

    Loa I, Syassen K, Monaco G, Vanko G, Krisch M, Hanfland M 2011 Phys. Rev. Lett. 107 086402Google Scholar

    [22]

    Fedyanin D Y, Yakubovsky D I, Kirtaev R V, Volkov V S 2016 Nano Lett. 16 326Google Scholar

    [23]

    Taliercio T, Biagioni P 2019 Nanophotonics 8 949Google Scholar

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [25]

    Frank I W, Tanenbaum D M, Van der Zande A M, McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558Google Scholar

    [26]

    Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N 2009 ACS Nano 3 3884Google Scholar

    [27]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Comps. Sci. Technol. 72 1459Google Scholar

    [28]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [29]

    Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [30]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [31]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [32]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [33]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297Google Scholar

    [34]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [35]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [36]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [37]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [39]

    Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [40]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Bnerjee S K, Colombo L 2014 Nat. Nanotechonl. 9 768Google Scholar

    [41]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318Google Scholar

    [43]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [44]

    Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T, MacDonald A H 2008 Phys. Rev. B 77 081411Google Scholar

    [45]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435Google Scholar

    [46]

    Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370Google Scholar

    [47]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541Google Scholar

    [48]

    de Abajo F J G 2014 ACS Photon. 1 135Google Scholar

    [49]

    Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [50]

    Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [51]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [52]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [53]

    Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802Google Scholar

    [54]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630Google Scholar

    [55]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nature Nanotechnol. 7 330Google Scholar

    [56]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [57]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [58]

    Eda G, Maier S A 2013 ACS Nano 7 5660Google Scholar

    [59]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899Google Scholar

    [60]

    Li Y, Li Z, Cheng C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [61]

    Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [62]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [63]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [64]

    Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192Google Scholar

    [65]

    Bolotin K L, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196Google Scholar

    [66]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693Google Scholar

    [67]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [68]

    Ferreira A, Rappoport T G, Cazalilla M A, Castro Neto A H 2014 Phys. Rev. Lett. 112 066601Google Scholar

    [69]

    Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, ven der Marel D, Kuzmenko A B 2011 Nat. Phys. 7 48Google Scholar

    [70]

    Fallahi A, Perruisseau-Carrier J 2012 Appl. Phys. Lett. 101 231605Google Scholar

    [71]

    Sounas D L, Skulason H S, Nguyen H V, Guermoune A, Slaj M, Szkopek T, Caloz C 2013 Appl. Phys. Lett. 102 191901Google Scholar

    [72]

    Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H 2013 Nat. Commun. 4 1841Google Scholar

    [73]

    Fetter A L 1985 Phys. Rev. B 32 7676Google Scholar

    [74]

    Mast D B, Dahm A J, Fetter A L 1985 Phys. Rev. Lett. 54 1706Google Scholar

    [75]

    Wu J, Hawrylak P, Eliasson G, Quinn J J 1986 Phys. Rev. B 33 7091Google Scholar

    [76]

    Armelles G, Cebollada A, Garcia-Martin A, Gonzalez M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [77]

    Poumirol J M, Liu P Q, Slipchenko T M, Nikitin A Y, Martin-Moreno L, Faist J, Kuzmenko A B 2017 Nat. Commun. 8 14626Google Scholar

    [78]

    Bychkov Y A, Martinez G 2008 Phys. Rev. B 77 125417Google Scholar

    [79]

    Berman O L, Gumbs G, Lozovik Y E 2008 Phys. Rev. B 78 085401Google Scholar

    [80]

    Wu J, Chen S, Roslyak O, Gumbs G, Lin M 2011 ACS Nano 5 1026Google Scholar

    [81]

    Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T H, Gaponenko I, Chen J, Kuzmenko A B 2012 Nano Lett. 12 2470Google Scholar

    [82]

    Ferreira A, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 85 205426Google Scholar

    [83]

    Mishchenko E G, Shyton A V, Silvestrov P G 2010 Phys. Rev. Lett. 104 156806Google Scholar

    [84]

    Petkovic I, Williams F I B, Bennaceur K, Portier F, Roche P, Glattli D C 2013 Phys. Rev. Lett. 110 016801Google Scholar

    [85]

    Sokolik A A, Lozovik 2019 Phys. Rev. B 100 125409Google Scholar

    [86]

    Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F 2012 Nano Lett. 12 3766Google Scholar

    [87]

    Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petkovic I, Glattli D C 2014 Phys. Rev. Lett. 113 266601Google Scholar

    [88]

    Lin X, Xu Y, Zhang B, Hao R, Chen H, Li E 2013 New J. Phys. 15 113003Google Scholar

    [89]

    Chamanara N, Sounas D, Caloz C 2013 Opt. Express 21 11248Google Scholar

    [90]

    Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljacic M, Fu L, Fang N 2016 Nat. Commun. 7 13486Google Scholar

    [91]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

    [92]

    Jin D, Christensen T, Soljacic M, Fang N, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [93]

    Wang W, Kinaret J M, Apell S P 2012 Phys. Rev. B 85 235444Google Scholar

    [94]

    Wang W, Apell S P, Kinaret J M 2012 Phys. Rev. B 86 125450Google Scholar

    [95]

    Jiao N, Kang S, Han K, Shen X, Wang W 2019 Phys. Rev. B 99 195447Google Scholar

    [96]

    Jiao N, Kang S, Han K, Shen X, Wang W 2021 Phys. Rev. B 103 085405Google Scholar

    [97]

    Wang N, Ding L, Wang W 2022 Phys. Rev. B 105 235435Google Scholar

    [98]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222Google Scholar

    [99]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 Phys. Rev. B 75 165407Google Scholar

    [100]

    Roldan R, Fuchs J, Goerbig M O 2009 Phys. Rev. B 80 085408Google Scholar

    [101]

    Morimoto T, Hatsugai Y, Aoki H 2009 Phys. Rev. Lett. 103 116803Google Scholar

    [102]

    Yang C, Peeters F M, Xu W 2010 Phys. Rev. B 82 205428Google Scholar

    [103]

    Wang W, Apell S P, Kinaret J M 2011 Phys. Rev. B 84 085423Google Scholar

    [104]

    Wang W, Christensen T, Jauho A P, Thygesen K S, Wubs M, Mortensen N A 2015 Sci. Rep. 5 9535Google Scholar

    [105]

    Wang W, Xiao S, Mortensen N A 2016 Phys. Rev. B 93 165407Google Scholar

    [106]

    Geuzaine C, Remacle J F 2009 Int. J. Numer. Meth. Eng. 79 1309Google Scholar

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐. 物理学报, 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [3] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [5] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [8] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [12] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响. 物理学报, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [13] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [14] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [15] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [17] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [19] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [20] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
计量
  • 文章访问数:  4123
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 修回日期:  2023-02-06
  • 上网日期:  2023-02-17
  • 刊出日期:  2023-04-20

/

返回文章
返回