- 
				石墨烯等离激元是决定石墨烯光学性质的重要元激发, 拥有一系列优异的特性, 其通过外置电场的动态可调性最引人注目; 石墨烯具有很强的磁场响应(如室温观测的量子霍尔效应), 因而磁场可作为一个新的调控自由度, 形成的准粒子叫作石墨烯磁等离激元. 鉴于石墨烯的二维属性, 石墨烯磁等离激元的研究大多采用三维近似, 即将石墨烯等效成厚度很薄的三维块材, 该处理方案需消耗大量的计算资源. 本文在准静态近似下, 围绕库仑定律和电荷守恒定律, 构建了高效的二维有限元方法, 自洽地求解石墨烯面内的积分微分方程, 并提出本征值损失谱表征准粒子的激发. 利用二维有限元方法, 探讨了4类石墨烯环中磁等离激元的激发; 最低阶的偶极共振都支持磁等离激元的对称劈裂, 在孔很小时, 其对模式劈裂的影响可忽略, 但当孔的尺寸变大时, 内外边界的相互作用将抑制模式劈裂, 并最终导致其消失.Graphene plasmons are important collective excitations in graphene, which play a key role in determining the optical properties of graphene. They have quite lots of unique features in comparison with classical plasmons in noble metals. Of them, the active tunability is the most attractive, which is realized by external gating (equivalently electric field). As is well known, graphene also has strong magnetic response (e.g. room temperature quantum Hall effect), so magnetic field can act as another degree of freedom for actively tuning graphene plasmons, with the new quasi particles being so-called graphene magneto-plasmons. Because of the two-dimensional nature of graphene, the numerical studies (or full wave simulations) of graphene magneto-plasmons are usually carried out through a three-dimensional approximation, e.g. treating two-dimensional graphene as a very thin three-dimensional film. Actually, this treatment takes quite some time and requires high memory consumption. Herein, starting from Coulomb law and charge conservation law, we propose an alternative numerical method, namely, two-dimensional finite element method, to solve this problem. All the calculations are now performed in two-dimensional graphene plane, and the usual three-dimensional approximation is not required. To characterize the excitations of graphene magneto-plasmons, the eigenvalue loss spectrum is introduced. Based on this method, graphene magneto-plasmons in graphene rings of four kinds are investigated. The strongest magneto-optic effect is observed in circular ring, which is consistent with its highest rotational symmetry. In all the rings, the lowest dipolar graphene magneto-plasmon always supports symmetric mode splitting, which can be further modified by the interaction between inner edge and outer edge of ring. As the hole size is very small, the edge current confined to the outer edge dominates, and that confined to the inner edge can be ignored; while increasing the hole size, the interaction between these two edges increases, which results in the reduction of the symmetric mode splitting; when the hole size is larger than a critical value, the symmetric mode splitting will disappear.- 
													Keywords:
													
- graphene /
- magneto-plasmon /
- finite element method /
- eigenvalue loss spectrum
 [1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824  Google Scholar Google Scholar[2] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193  Google Scholar Google Scholar[3] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83  Google Scholar Google Scholar[4] Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702  Google Scholar Google Scholar[5] Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U 2011 Nano Lett. 11 2219  Google Scholar Google Scholar[6] Senanayake P, Hung C, Shapiro J, Lin A, Liang B, Williams B S, Huffaker D L 2011 Nano Lett. 11 5279  Google Scholar Google Scholar[7] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442  Google Scholar Google Scholar[8] Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867  Google Scholar Google Scholar[9] Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657  Google Scholar Google Scholar[10] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534  Google Scholar Google Scholar[11] Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726  Google Scholar Google Scholar[12] Kawata S, Inouye Y, Verma P 2009 Nat. Phton. 3 388  Google Scholar Google Scholar[13] Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044  Google Scholar Google Scholar[14] Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69  Google Scholar Google Scholar[15] 周利, 王取泉 2019 物理学报 68 147301  Google Scholar Google ScholarZhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301  Google Scholar Google Scholar[16] Boltasseva A, Atwater H A 2011 Science 331 290  Google Scholar Google Scholar[17] Khurgin J B 2015 Nat. Nanotech. 10 2  Google Scholar Google Scholar[18] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795  Google Scholar Google Scholar[19] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264  Google Scholar Google Scholar[20] Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J 2014 ACS Nano 8 834  Google Scholar Google Scholar[21] Loa I, Syassen K, Monaco G, Vanko G, Krisch M, Hanfland M 2011 Phys. Rev. Lett. 107 086402  Google Scholar Google Scholar[22] Fedyanin D Y, Yakubovsky D I, Kirtaev R V, Volkov V S 2016 Nano Lett. 16 326  Google Scholar Google Scholar[23] Taliercio T, Biagioni P 2019 Nanophotonics 8 949  Google Scholar Google Scholar[24] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666  Google Scholar Google Scholar[25] Frank I W, Tanenbaum D M, Van der Zande A M, McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558  Google Scholar Google Scholar[26] Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N 2009 ACS Nano 3 3884  Google Scholar Google Scholar[27] Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Comps. Sci. Technol. 72 1459  Google Scholar Google Scholar[28] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902  Google Scholar Google Scholar[29] Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645  Google Scholar Google Scholar[30] Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273  Google Scholar Google Scholar[31] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308  Google Scholar Google Scholar[32] Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206  Google Scholar Google Scholar[33] Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297  Google Scholar Google Scholar[34] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64  Google Scholar Google Scholar[35] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197  Google Scholar Google Scholar[36] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183  Google Scholar Google Scholar[37] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109  Google Scholar Google Scholar[38] Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407  Google Scholar Google Scholar[39] Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F 2011 Nanoscale 3 20  Google Scholar Google Scholar[40] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Bnerjee S K, Colombo L 2014 Nat. Nanotechonl. 9 768  Google Scholar Google Scholar[41] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439  Google Scholar Google Scholar[42] Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318  Google Scholar Google Scholar[43] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418  Google Scholar Google Scholar[44] Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T, MacDonald A H 2008 Phys. Rev. B 77 081411  Google Scholar Google Scholar[45] Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435  Google Scholar Google Scholar[46] Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370  Google Scholar Google Scholar[47] Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541  Google Scholar Google Scholar[48] de Abajo F J G 2014 ACS Photon. 1 135  Google Scholar Google Scholar[49] Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77  Google Scholar Google Scholar[50] Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82  Google Scholar Google Scholar[51] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602  Google Scholar Google Scholar[52] Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491  Google Scholar Google Scholar[53] Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802  Google Scholar Google Scholar[54] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630  Google Scholar Google Scholar[55] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nature Nanotechnol. 7 330  Google Scholar Google Scholar[56] Low T, Avouris P 2014 ACS Nano 8 1086  Google Scholar Google Scholar[57] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103  Google Scholar Google ScholarWu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103  Google Scholar Google Scholar[58] Eda G, Maier S A 2013 ACS Nano 7 5660  Google Scholar Google Scholar[59] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899  Google Scholar Google Scholar[60] Li Y, Li Z, Cheng C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430  Google Scholar Google Scholar[61] Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201  Google Scholar Google Scholar[62] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379  Google Scholar Google Scholar[63] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30  Google Scholar Google Scholar[64] Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192  Google Scholar Google Scholar[65] Bolotin K L, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196  Google Scholar Google Scholar[66] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693  Google Scholar Google Scholar[67] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801  Google Scholar Google Scholar[68] Ferreira A, Rappoport T G, Cazalilla M A, Castro Neto A H 2014 Phys. Rev. Lett. 112 066601  Google Scholar Google Scholar[69] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, ven der Marel D, Kuzmenko A B 2011 Nat. Phys. 7 48  Google Scholar Google Scholar[70] Fallahi A, Perruisseau-Carrier J 2012 Appl. Phys. Lett. 101 231605  Google Scholar Google Scholar[71] Sounas D L, Skulason H S, Nguyen H V, Guermoune A, Slaj M, Szkopek T, Caloz C 2013 Appl. Phys. Lett. 102 191901  Google Scholar Google Scholar[72] Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H 2013 Nat. Commun. 4 1841  Google Scholar Google Scholar[73] Fetter A L 1985 Phys. Rev. B 32 7676  Google Scholar Google Scholar[74] Mast D B, Dahm A J, Fetter A L 1985 Phys. Rev. Lett. 54 1706  Google Scholar Google Scholar[75] Wu J, Hawrylak P, Eliasson G, Quinn J J 1986 Phys. Rev. B 33 7091  Google Scholar Google Scholar[76] Armelles G, Cebollada A, Garcia-Martin A, Gonzalez M U 2013 Adv. Opt. Mater. 1 10  Google Scholar Google Scholar[77] Poumirol J M, Liu P Q, Slipchenko T M, Nikitin A Y, Martin-Moreno L, Faist J, Kuzmenko A B 2017 Nat. Commun. 8 14626  Google Scholar Google Scholar[78] Bychkov Y A, Martinez G 2008 Phys. Rev. B 77 125417  Google Scholar Google Scholar[79] Berman O L, Gumbs G, Lozovik Y E 2008 Phys. Rev. B 78 085401  Google Scholar Google Scholar[80] Wu J, Chen S, Roslyak O, Gumbs G, Lin M 2011 ACS Nano 5 1026  Google Scholar Google Scholar[81] Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T H, Gaponenko I, Chen J, Kuzmenko A B 2012 Nano Lett. 12 2470  Google Scholar Google Scholar[82] Ferreira A, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 85 205426  Google Scholar Google Scholar[83] Mishchenko E G, Shyton A V, Silvestrov P G 2010 Phys. Rev. Lett. 104 156806  Google Scholar Google Scholar[84] Petkovic I, Williams F I B, Bennaceur K, Portier F, Roche P, Glattli D C 2013 Phys. Rev. Lett. 110 016801  Google Scholar Google Scholar[85] Sokolik A A, Lozovik 2019 Phys. Rev. B 100 125409  Google Scholar Google Scholar[86] Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F 2012 Nano Lett. 12 3766  Google Scholar Google Scholar[87] Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petkovic I, Glattli D C 2014 Phys. Rev. Lett. 113 266601  Google Scholar Google Scholar[88] Lin X, Xu Y, Zhang B, Hao R, Chen H, Li E 2013 New J. Phys. 15 113003  Google Scholar Google Scholar[89] Chamanara N, Sounas D, Caloz C 2013 Opt. Express 21 11248  Google Scholar Google Scholar[90] Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljacic M, Fu L, Fang N 2016 Nat. Commun. 7 13486  Google Scholar Google Scholar[91] Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243  Google Scholar Google Scholar[92] Jin D, Christensen T, Soljacic M, Fang N, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301  Google Scholar Google Scholar[93] Wang W, Kinaret J M, Apell S P 2012 Phys. Rev. B 85 235444  Google Scholar Google Scholar[94] Wang W, Apell S P, Kinaret J M 2012 Phys. Rev. B 86 125450  Google Scholar Google Scholar[95] Jiao N, Kang S, Han K, Shen X, Wang W 2019 Phys. Rev. B 99 195447  Google Scholar Google Scholar[96] Jiao N, Kang S, Han K, Shen X, Wang W 2021 Phys. Rev. B 103 085405  Google Scholar Google Scholar[97] Wang N, Ding L, Wang W 2022 Phys. Rev. B 105 235435  Google Scholar Google Scholar[98] Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222  Google Scholar Google Scholar[99] Gusynin V P, Sharapov S G, Carbotte J P 2007 Phys. Rev. B 75 165407  Google Scholar Google Scholar[100] Roldan R, Fuchs J, Goerbig M O 2009 Phys. Rev. B 80 085408  Google Scholar Google Scholar[101] Morimoto T, Hatsugai Y, Aoki H 2009 Phys. Rev. Lett. 103 116803  Google Scholar Google Scholar[102] Yang C, Peeters F M, Xu W 2010 Phys. Rev. B 82 205428  Google Scholar Google Scholar[103] Wang W, Apell S P, Kinaret J M 2011 Phys. Rev. B 84 085423  Google Scholar Google Scholar[104] Wang W, Christensen T, Jauho A P, Thygesen K S, Wubs M, Mortensen N A 2015 Sci. Rep. 5 9535  Google Scholar Google Scholar[105] Wang W, Xiao S, Mortensen N A 2016 Phys. Rev. B 93 165407  Google Scholar Google Scholar[106] Geuzaine C, Remacle J F 2009 Int. J. Numer. Meth. Eng. 79 1309  Google Scholar Google Scholar
- 
				
    
    
图 1 石墨烯圆环(a)、方环(b)、方孔圆环(c)、圆孔方环(d)网格划分示意图, 环的直径或边长均为100 nm, 孔的直径或边长均为50 nm Fig. 1. Schematic diagrams of mesh generation for graphene circular ring (a), square ring (b), circular ring with square hole (c), and square ring with circular hole (d). The diameteror side length of ring is 100 nm, and that of hole is 50 nm. 
- 
				
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824  Google Scholar Google Scholar[2] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193  Google Scholar Google Scholar[3] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83  Google Scholar Google Scholar[4] Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702  Google Scholar Google Scholar[5] Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U 2011 Nano Lett. 11 2219  Google Scholar Google Scholar[6] Senanayake P, Hung C, Shapiro J, Lin A, Liang B, Williams B S, Huffaker D L 2011 Nano Lett. 11 5279  Google Scholar Google Scholar[7] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442  Google Scholar Google Scholar[8] Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867  Google Scholar Google Scholar[9] Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657  Google Scholar Google Scholar[10] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534  Google Scholar Google Scholar[11] Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726  Google Scholar Google Scholar[12] Kawata S, Inouye Y, Verma P 2009 Nat. Phton. 3 388  Google Scholar Google Scholar[13] Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044  Google Scholar Google Scholar[14] Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69  Google Scholar Google Scholar[15] 周利, 王取泉 2019 物理学报 68 147301  Google Scholar Google ScholarZhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301  Google Scholar Google Scholar[16] Boltasseva A, Atwater H A 2011 Science 331 290  Google Scholar Google Scholar[17] Khurgin J B 2015 Nat. Nanotech. 10 2  Google Scholar Google Scholar[18] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795  Google Scholar Google Scholar[19] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264  Google Scholar Google Scholar[20] Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J 2014 ACS Nano 8 834  Google Scholar Google Scholar[21] Loa I, Syassen K, Monaco G, Vanko G, Krisch M, Hanfland M 2011 Phys. Rev. Lett. 107 086402  Google Scholar Google Scholar[22] Fedyanin D Y, Yakubovsky D I, Kirtaev R V, Volkov V S 2016 Nano Lett. 16 326  Google Scholar Google Scholar[23] Taliercio T, Biagioni P 2019 Nanophotonics 8 949  Google Scholar Google Scholar[24] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666  Google Scholar Google Scholar[25] Frank I W, Tanenbaum D M, Van der Zande A M, McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558  Google Scholar Google Scholar[26] Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N 2009 ACS Nano 3 3884  Google Scholar Google Scholar[27] Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Comps. Sci. Technol. 72 1459  Google Scholar Google Scholar[28] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902  Google Scholar Google Scholar[29] Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645  Google Scholar Google Scholar[30] Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273  Google Scholar Google Scholar[31] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308  Google Scholar Google Scholar[32] Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206  Google Scholar Google Scholar[33] Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297  Google Scholar Google Scholar[34] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64  Google Scholar Google Scholar[35] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197  Google Scholar Google Scholar[36] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183  Google Scholar Google Scholar[37] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109  Google Scholar Google Scholar[38] Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407  Google Scholar Google Scholar[39] Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F 2011 Nanoscale 3 20  Google Scholar Google Scholar[40] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Bnerjee S K, Colombo L 2014 Nat. Nanotechonl. 9 768  Google Scholar Google Scholar[41] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439  Google Scholar Google Scholar[42] Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318  Google Scholar Google Scholar[43] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418  Google Scholar Google Scholar[44] Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T, MacDonald A H 2008 Phys. Rev. B 77 081411  Google Scholar Google Scholar[45] Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435  Google Scholar Google Scholar[46] Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370  Google Scholar Google Scholar[47] Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541  Google Scholar Google Scholar[48] de Abajo F J G 2014 ACS Photon. 1 135  Google Scholar Google Scholar[49] Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77  Google Scholar Google Scholar[50] Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82  Google Scholar Google Scholar[51] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602  Google Scholar Google Scholar[52] Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491  Google Scholar Google Scholar[53] Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802  Google Scholar Google Scholar[54] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630  Google Scholar Google Scholar[55] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nature Nanotechnol. 7 330  Google Scholar Google Scholar[56] Low T, Avouris P 2014 ACS Nano 8 1086  Google Scholar Google Scholar[57] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103  Google Scholar Google ScholarWu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103  Google Scholar Google Scholar[58] Eda G, Maier S A 2013 ACS Nano 7 5660  Google Scholar Google Scholar[59] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899  Google Scholar Google Scholar[60] Li Y, Li Z, Cheng C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430  Google Scholar Google Scholar[61] Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201  Google Scholar Google Scholar[62] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379  Google Scholar Google Scholar[63] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30  Google Scholar Google Scholar[64] Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192  Google Scholar Google Scholar[65] Bolotin K L, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196  Google Scholar Google Scholar[66] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693  Google Scholar Google Scholar[67] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801  Google Scholar Google Scholar[68] Ferreira A, Rappoport T G, Cazalilla M A, Castro Neto A H 2014 Phys. Rev. Lett. 112 066601  Google Scholar Google Scholar[69] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, ven der Marel D, Kuzmenko A B 2011 Nat. Phys. 7 48  Google Scholar Google Scholar[70] Fallahi A, Perruisseau-Carrier J 2012 Appl. Phys. Lett. 101 231605  Google Scholar Google Scholar[71] Sounas D L, Skulason H S, Nguyen H V, Guermoune A, Slaj M, Szkopek T, Caloz C 2013 Appl. Phys. Lett. 102 191901  Google Scholar Google Scholar[72] Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H 2013 Nat. Commun. 4 1841  Google Scholar Google Scholar[73] Fetter A L 1985 Phys. Rev. B 32 7676  Google Scholar Google Scholar[74] Mast D B, Dahm A J, Fetter A L 1985 Phys. Rev. Lett. 54 1706  Google Scholar Google Scholar[75] Wu J, Hawrylak P, Eliasson G, Quinn J J 1986 Phys. Rev. B 33 7091  Google Scholar Google Scholar[76] Armelles G, Cebollada A, Garcia-Martin A, Gonzalez M U 2013 Adv. Opt. Mater. 1 10  Google Scholar Google Scholar[77] Poumirol J M, Liu P Q, Slipchenko T M, Nikitin A Y, Martin-Moreno L, Faist J, Kuzmenko A B 2017 Nat. Commun. 8 14626  Google Scholar Google Scholar[78] Bychkov Y A, Martinez G 2008 Phys. Rev. B 77 125417  Google Scholar Google Scholar[79] Berman O L, Gumbs G, Lozovik Y E 2008 Phys. Rev. B 78 085401  Google Scholar Google Scholar[80] Wu J, Chen S, Roslyak O, Gumbs G, Lin M 2011 ACS Nano 5 1026  Google Scholar Google Scholar[81] Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T H, Gaponenko I, Chen J, Kuzmenko A B 2012 Nano Lett. 12 2470  Google Scholar Google Scholar[82] Ferreira A, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 85 205426  Google Scholar Google Scholar[83] Mishchenko E G, Shyton A V, Silvestrov P G 2010 Phys. Rev. Lett. 104 156806  Google Scholar Google Scholar[84] Petkovic I, Williams F I B, Bennaceur K, Portier F, Roche P, Glattli D C 2013 Phys. Rev. Lett. 110 016801  Google Scholar Google Scholar[85] Sokolik A A, Lozovik 2019 Phys. Rev. B 100 125409  Google Scholar Google Scholar[86] Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F 2012 Nano Lett. 12 3766  Google Scholar Google Scholar[87] Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petkovic I, Glattli D C 2014 Phys. Rev. Lett. 113 266601  Google Scholar Google Scholar[88] Lin X, Xu Y, Zhang B, Hao R, Chen H, Li E 2013 New J. Phys. 15 113003  Google Scholar Google Scholar[89] Chamanara N, Sounas D, Caloz C 2013 Opt. Express 21 11248  Google Scholar Google Scholar[90] Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljacic M, Fu L, Fang N 2016 Nat. Commun. 7 13486  Google Scholar Google Scholar[91] Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243  Google Scholar Google Scholar[92] Jin D, Christensen T, Soljacic M, Fang N, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301  Google Scholar Google Scholar[93] Wang W, Kinaret J M, Apell S P 2012 Phys. Rev. B 85 235444  Google Scholar Google Scholar[94] Wang W, Apell S P, Kinaret J M 2012 Phys. Rev. B 86 125450  Google Scholar Google Scholar[95] Jiao N, Kang S, Han K, Shen X, Wang W 2019 Phys. Rev. B 99 195447  Google Scholar Google Scholar[96] Jiao N, Kang S, Han K, Shen X, Wang W 2021 Phys. Rev. B 103 085405  Google Scholar Google Scholar[97] Wang N, Ding L, Wang W 2022 Phys. Rev. B 105 235435  Google Scholar Google Scholar[98] Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222  Google Scholar Google Scholar[99] Gusynin V P, Sharapov S G, Carbotte J P 2007 Phys. Rev. B 75 165407  Google Scholar Google Scholar[100] Roldan R, Fuchs J, Goerbig M O 2009 Phys. Rev. B 80 085408  Google Scholar Google Scholar[101] Morimoto T, Hatsugai Y, Aoki H 2009 Phys. Rev. Lett. 103 116803  Google Scholar Google Scholar[102] Yang C, Peeters F M, Xu W 2010 Phys. Rev. B 82 205428  Google Scholar Google Scholar[103] Wang W, Apell S P, Kinaret J M 2011 Phys. Rev. B 84 085423  Google Scholar Google Scholar[104] Wang W, Christensen T, Jauho A P, Thygesen K S, Wubs M, Mortensen N A 2015 Sci. Rep. 5 9535  Google Scholar Google Scholar[105] Wang W, Xiao S, Mortensen N A 2016 Phys. Rev. B 93 165407  Google Scholar Google Scholar[106] Geuzaine C, Remacle J F 2009 Int. J. Numer. Meth. Eng. 79 1309  Google Scholar Google Scholar
计量
- 文章访问数: 6962
- PDF下载量: 140
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							



 
							