搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限尺寸石墨烯的电子态

邓伟胤 朱瑞 邓文基

引用本文:
Citation:

有限尺寸石墨烯的电子态

邓伟胤, 朱瑞, 邓文基

Electronic state of the limited graphene

Deng Wei-Yin, Zhu Rui, Deng Wen-Ji
PDF
导出引用
  • 根据π电子的紧束缚模型, 通过有限系统的Bloch定理方法, 解析计算了有限尺寸石墨烯的电子态和能带. 研究发现, 其电子态有且只有两类, 分别是驻波态和边缘态.驻波态时, 波函数形式是两个方向都是正弦函数; 边缘态时, 波函数形式是Armchair边界的方向是双曲正弦函数, Zigzag边界的方向是正弦函数. 其能带由总碳原子数N个离散的本征值组成, 推导了定量计算边缘态的本征值个数的表达式, 并通过态密度来分析边缘态的存在和与无限大情况的一致性. 所有的分析中数值结果与解析理论都完全一致, 当两个受限方向都变成无限长时, 可以得到与无限大石墨烯相同的结果.
    The limited graphene means that two directions of graphene are limited, one is zigzag type boundary and the other is armchair type boundary. Based on the tight-binding model, the electronic state and band of the limited graphene are given analytically. The results show that there are only two kinds of electronic states, i.e., the standing wave state and edge state. For the standing wave state, the wave function is in the form of sine function in two directions; for the edge state, the wave function is in the form of hyperbolic sine function in the direction of armchair boundary and in the form of sine function in the direction of zigzag boundary. The band is composited of total carbon atom number N discrete eigenvalues. The expression of quantitativly calculating the number of eigenvalues of edge state is deduced. Through the density of states of the limited graphene we analyze the existence of the edge state and the consistency in the infinity case. The results from the analitical method are the same as the numerical resullts. When the width of two restricted boundary goes into infinity, the result of the limited graphene tends to that in the infinity case.
    • 基金项目: 国家自然科学基金(批准号:11004063)和中央高校基本科研业务费(批准号:2012ZZ0076)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11004063) and the Fundamental Research Fund for the Central Universities, China (Grant No. 2012ZZ0076).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 195408

    [7]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [8]

    Rusin T M, Zawadzki W 2008 Phys. Rev. B 78 125419

    [9]

    Rusin T M, Zawadzki W 2009 Phys. Rev. B 80 045416

    [10]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [11]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [12]

    Klein D J 1994 Chem. Phys. Lett. 217 261

    [13]

    Jiang L W, Zheng Y S, Yi C S, Li H D, Lue T Q 2009 Phys. Rev. B 80 155454

    [14]

    Wakabayashi K, Sasaki K, Nakanishi T, Enoki T 2010 Sci. Technol. Adv. Mater. 11 054504

    [15]

    Sasaki K, Murakami S, Saito R 2006 J. Phys. Soc. Jpn. 75 074713

    [16]

    Sasaki K, Murakami S, Saito R 2006 Appl. Phys. Lett. 88 113110

    [17]

    Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414

    [18]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [19]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [20]

    Zhu R, Chen H M 2009 Appl. Phys. Lett. 95 122111

    [21]

    Zhu R, Guo Y 2007 Appl. Phys. Lett. 91 252113

    [22]

    Guo X X, Liu D, Li Y X 2011 Appl. Phys. Lett. 98 242101

    [23]

    Wallace P R 1947 Phys. Rev. 71 622

    [24]

    Bena C, Kivelson S A 2005 Phys. Rev. B 72 125432

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 195408

    [7]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [8]

    Rusin T M, Zawadzki W 2008 Phys. Rev. B 78 125419

    [9]

    Rusin T M, Zawadzki W 2009 Phys. Rev. B 80 045416

    [10]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [11]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [12]

    Klein D J 1994 Chem. Phys. Lett. 217 261

    [13]

    Jiang L W, Zheng Y S, Yi C S, Li H D, Lue T Q 2009 Phys. Rev. B 80 155454

    [14]

    Wakabayashi K, Sasaki K, Nakanishi T, Enoki T 2010 Sci. Technol. Adv. Mater. 11 054504

    [15]

    Sasaki K, Murakami S, Saito R 2006 J. Phys. Soc. Jpn. 75 074713

    [16]

    Sasaki K, Murakami S, Saito R 2006 Appl. Phys. Lett. 88 113110

    [17]

    Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414

    [18]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [19]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [20]

    Zhu R, Chen H M 2009 Appl. Phys. Lett. 95 122111

    [21]

    Zhu R, Guo Y 2007 Appl. Phys. Lett. 91 252113

    [22]

    Guo X X, Liu D, Li Y X 2011 Appl. Phys. Lett. 98 242101

    [23]

    Wallace P R 1947 Phys. Rev. 71 622

    [24]

    Bena C, Kivelson S A 2005 Phys. Rev. B 72 125432

  • [1] 李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷. 双层石墨烯中的偶数分母分数量子霍尔态. 物理学报, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [2] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221292
    [3] 夏群, 邓文基. 体态和边缘态的电导峰. 物理学报, 2022, 71(13): 137301. doi: 10.7498/aps.71.20212424
    [4] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [5] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [6] 梅宇涵, 邵越, 杭志宏. 基于紧束缚模型的拓扑物理微波实验验证平台的开发. 物理学报, 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [7] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态. 物理学报, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [8] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [9] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [10] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [11] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO . 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [12] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [13] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态. 物理学报, 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [14] 王雪梅, 刘红. 锯齿型石墨烯纳米带的能带研究. 物理学报, 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
    [15] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响. 物理学报, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [16] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究. 物理学报, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
    [17] 宋 骏, 陈 雷, 刘德胜, 解士杰. DNA分子能带结构与电子态研究. 物理学报, 2004, 53(8): 2792-2795. doi: 10.7498/aps.53.2792
    [18] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制. 物理学报, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [19] 韩亦文, 洪 云. Schwarzschild-de-Sitter黑洞宇宙视界量子态的熵. 物理学报, 2004, 53(10): 3270-3273. doi: 10.7498/aps.53.3270
    [20] 刘晓东, 李曙光, 许兴胜, 王义全, 程丙英, 张道中. 用不同密度分布的发光分子探测光子晶体的全态密度. 物理学报, 2004, 53(1): 132-136. doi: 10.7498/aps.53.132
计量
  • 文章访问数:  4315
  • PDF下载量:  1198
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-26
  • 修回日期:  2012-12-21
  • 刊出日期:  2013-04-05

有限尺寸石墨烯的电子态

  • 1. 华南理工大学物理系, 广州 510641
    基金项目: 国家自然科学基金(批准号:11004063)和中央高校基本科研业务费(批准号:2012ZZ0076)资助的课题.

摘要: 根据π电子的紧束缚模型, 通过有限系统的Bloch定理方法, 解析计算了有限尺寸石墨烯的电子态和能带. 研究发现, 其电子态有且只有两类, 分别是驻波态和边缘态.驻波态时, 波函数形式是两个方向都是正弦函数; 边缘态时, 波函数形式是Armchair边界的方向是双曲正弦函数, Zigzag边界的方向是正弦函数. 其能带由总碳原子数N个离散的本征值组成, 推导了定量计算边缘态的本征值个数的表达式, 并通过态密度来分析边缘态的存在和与无限大情况的一致性. 所有的分析中数值结果与解析理论都完全一致, 当两个受限方向都变成无限长时, 可以得到与无限大石墨烯相同的结果.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回