搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋轨道矩协助自旋转移矩驱动磁化强度翻转

王日兴 曾逸涵 赵婧莉 李连 肖运昌

引用本文:
Citation:

自旋轨道矩协助自旋转移矩驱动磁化强度翻转

王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌

The magnetization reversal driven by spin-orbit-assisted spin-transfer torque

Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang
PDF
HTML
导出引用
  • 以磁隧道结/重金属层组成的三端口磁隧道结为理论模型, 通过对包含自旋转移矩和自旋轨道矩的Landau-Lifshitz-Gilbert (LLG)方程做线性化稳定性分析, 研究了自旋轨道矩协助自旋转移矩驱动的磁化强度翻转. 发现在自旋轨道矩协助下, 磁矩的翻转时间极大减小, 翻转时间随自旋轨道矩电流密度的增大而减小, 且自旋转移矩和自旋轨道矩的结合可实现零磁场的磁化翻转. 另外, 相比自旋轨道矩的类阻尼项, 类场项在磁化强度的翻转中起着主导作用, 且自旋轨道矩类场项的出现也可以减小磁化强度的翻转时间, 磁化强度翻转时间随自旋轨道矩类场项强度的增大而减小.
    As the data writing scheme of magnetization reversal driven by spin-transfer torque can overcome the shortcomings of traditional magnetic-field writing mechanism, it has become a mainstream way of implementing information writing in magnetic random access memory. However, the explosive growth of information shows higher requirements for data storage and information processing, thus magnetic random access memories based on spin-transfer torque data writing method pose several issues, including barrier reliability and limited storage speed. Recent experimental studies have shown that the spin-orbit torque through the spin Hall effect or Rashba effect in heavy-metal/ferromagnetic bilayer structures has the potential advantages in overcoming these limitations. They can also be used to drive magnetization to achieve rapid reversal. Especially, the three-terminal magnetic tunnel junction separates data reading from writing current. It has the advantages of faster writing speed and better stability and thus becomes the most promising magnetic storage technique at present. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque in a three-terminal magnetic tunnel junction is studied theoretically in this work. By linearizing the Landau-Lifshitz-Gilbert equation with the additional spin-transfer torque term and spin-orbit torque term in the spherical coordinates, two coupled differential equations and the new equilibrium directions are obtained. With the stability analysis of the new equilibrium directions, the phase diagrams defined in parameter space spanned by the current densities of spin-transfer and spin-orbit torques are established. There are several magnetic states in the phase diagrams, including quasi-parallel stable states, quasi-antiparallel stable states, and bistable states. By adjusting the current density of the spin-transfer torque, the magnetization reversal between two stable states is realized. It is found that the magnetization reversal time is greatly reduced with the assisting of spin-orbit torque, and it decreases with the augment of current density of spin-orbit torque. Meanwhile, the zero-field magnetization reversal can be realized through the interplay between spin-orbit torque and spin-transfer torque. In addition, compared with the damping-like term of spin-orbit torque, the field-like one plays a leading role in magnetization reversal. The presence of field-like term of spin-orbit torque can also reduce the reversal time that decreases with the increase of the ratio of field-like torque to damping-like one.
      通信作者: 王日兴, wangrixing1982@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11704120)、湖南省教育厅优秀青年项目(批准号: 20B401)和湖南省教育厅一般项目(批准号: 21C0509)资助的课题
      Corresponding author: Wang Ri-Xing, wangrixing1982@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704120), the Excellent Youth Fund of Hunan Education Department, China (Grant No. 20B401), and the Foundation of Hunan Education Department, China (Grant No. 21C0509)
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [4]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS. Bull. 43 352Google Scholar

    [5]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physics, Mechanics & Astronomy 46 107306

    [6]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [7]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204Google Scholar

    [8]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [9]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [10]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [11]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [12]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [13]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [14]

    Cai K M, Meiyin Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [15]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [16]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Sci. Rep. 8 382Google Scholar

    [17]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [18]

    Liu L, Zhou C H, Shu X Y, Li C J, Zhao T Y, Lin W N, Deng J Y, Xie Q D, Chen S H, Zhou J, Guo R, Wang H, Yu J H, Shi S, Yang P, Stenphen P, Aurelien M, Chen J S 2021 Nat. Nanotechnol. 16 277Google Scholar

    [19]

    Sheng Y, Kevin W E, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [20]

    Cao Y, Sheng Y, Kevin W E, Ji Yang, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [21]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J M, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C D, Wang J P, Alert F, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [22]

    Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar

    [23]

    Isogami S, Shiokawa Y, Tsumita A, Komura E, Ishitani Y, Hamanaka K, Taniguchi T, Mitani S, Sasaki T, Hayashi M 2021 Sci. Rep. 11 16676Google Scholar

    [24]

    Zhang C L, Takeuchi Y, Shunsuke Fukami S, Ohno H 2021 Appl. Phys. Lett. 118 092406Google Scholar

    [25]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [26]

    Kurebayashi H, Sinaova J, Fang D, lrvine A C, Skinner T D, Wunderlich J, Novák V, Canpion R P, Gallagher B L, Vehstedt E K, Zârba L P, Výborný K, Ferguson A J, Jungwirth T 2014 Nat. Nanotechnol. 9 211Google Scholar

    [27]

    Ou Y X, Pai C F, Shi S J, Ralph D C, Buhrman R A 2016 Phys. Rev. B 94 140414Google Scholar

    [28]

    Fan X, Celik H, Wu J, Ni C Y, Lee K J, Lorenz V O, Xiao J Q 2014 Nat. Commun. 5 3042Google Scholar

    [29]

    Lee J M, Kwon J H, Ramaswamy R, Yoon J, Son J, Qiu X, Mishra R, Srivastava S, Cai K, Yang H 2018 Commun. Phys. 1 2Google Scholar

    [30]

    Zhuo Y D, Cai W L, Zhu D Q, Zhang H C, Du A, Cao K H, Yin J L, Huang Y, Shi K W, Zhao W S 2022 Sci. Sin.: Physics, Mechanics & Astronomy 65 107511

    [31]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210Google Scholar

    [32]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 物理学报 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

  • 图 1  理论模型和坐标系

    Fig. 1.  Theoretical mode and coordinate system

    图 2  以自旋转移矩电流密度$ J_{{\rm{STT}}} $和自旋轨道矩电流密度$ J_{{\rm{SOT}}} $为控制参数的相图(外磁场$ h_{0} = 2 $), 插图为$ h_{0} = 0 $时的磁性状态相图

    Fig. 2.  Phase diagram defined in parameter space spanned by the current densities of STT and SOT for the external magnetic field $ h_{0} = 2 $. The inset is the phase diagram of magnetic states for $ h_{0} = $$ 0 $.

    图 3  自由层磁化强度分量$m_y $随时间的演化轨迹 (a) 图2中“a”, “b”, “c”, “d”和“e”五点的自由层磁化强度分量$ m_{y} $随时间的演化轨迹, 插图为翻转时间随自旋轨道矩电流密度的变化关系; (b) 图2中“a”点对应的不同外磁场作用下$ m_{y} $随时间的演化轨迹

    Fig. 3.  Time evolutions of free-layer magnetization $ m_{y} $: (a) Time evolutions of free -layer magnetization$m_y $ for five points “a”, “b”, “c” “d”, and “e” in Fig. 2,the inset shows the dependence of the reversal time on the SOT current density; (b) time evolutions of $ m_{y} $ for point “a” in Fig. 2 with different external magnetic fields

    图 4  以自旋转移矩电流密度$ J_{{\rm{STT}}} $和自旋轨道矩类场项和类阻尼项之比β为控制参数的相图

    Fig. 4.  Phase diagram defined in parameter space controlled by the current density of STT and the ratio of field-like term to damping-like one of SOT.

    图 5  图4中不同β值对应的a, b, c, de五点, 自由层磁化强度分量$ m_{y} $随时间的演化关系, 插图为磁化翻转时间随β的变化关系

    Fig. 5.  Time evolutions of free-layer magnetization $ m_{y} $ for five points “a”, “b”, “c”, “d”, and “e” in Fig. 4 with different β. The inset shows the dependence of the reversal time on β

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [4]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS. Bull. 43 352Google Scholar

    [5]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physics, Mechanics & Astronomy 46 107306

    [6]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [7]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204Google Scholar

    [8]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [9]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [10]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [11]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [12]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [13]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [14]

    Cai K M, Meiyin Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [15]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [16]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Sci. Rep. 8 382Google Scholar

    [17]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [18]

    Liu L, Zhou C H, Shu X Y, Li C J, Zhao T Y, Lin W N, Deng J Y, Xie Q D, Chen S H, Zhou J, Guo R, Wang H, Yu J H, Shi S, Yang P, Stenphen P, Aurelien M, Chen J S 2021 Nat. Nanotechnol. 16 277Google Scholar

    [19]

    Sheng Y, Kevin W E, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [20]

    Cao Y, Sheng Y, Kevin W E, Ji Yang, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [21]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J M, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C D, Wang J P, Alert F, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [22]

    Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar

    [23]

    Isogami S, Shiokawa Y, Tsumita A, Komura E, Ishitani Y, Hamanaka K, Taniguchi T, Mitani S, Sasaki T, Hayashi M 2021 Sci. Rep. 11 16676Google Scholar

    [24]

    Zhang C L, Takeuchi Y, Shunsuke Fukami S, Ohno H 2021 Appl. Phys. Lett. 118 092406Google Scholar

    [25]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [26]

    Kurebayashi H, Sinaova J, Fang D, lrvine A C, Skinner T D, Wunderlich J, Novák V, Canpion R P, Gallagher B L, Vehstedt E K, Zârba L P, Výborný K, Ferguson A J, Jungwirth T 2014 Nat. Nanotechnol. 9 211Google Scholar

    [27]

    Ou Y X, Pai C F, Shi S J, Ralph D C, Buhrman R A 2016 Phys. Rev. B 94 140414Google Scholar

    [28]

    Fan X, Celik H, Wu J, Ni C Y, Lee K J, Lorenz V O, Xiao J Q 2014 Nat. Commun. 5 3042Google Scholar

    [29]

    Lee J M, Kwon J H, Ramaswamy R, Yoon J, Son J, Qiu X, Mishra R, Srivastava S, Cai K, Yang H 2018 Commun. Phys. 1 2Google Scholar

    [30]

    Zhuo Y D, Cai W L, Zhu D Q, Zhang H C, Du A, Cao K H, Yin J L, Huang Y, Shi K W, Zhao W S 2022 Sci. Sin.: Physics, Mechanics & Astronomy 65 107511

    [31]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210Google Scholar

    [32]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 物理学报 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转. 物理学报, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [3] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [4] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器. 物理学报, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [5] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [7] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展. 物理学报, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [8] 袁佳卉, 杨晓阔, 张斌, 陈亚博, 钟军, 危波, 宋明旭, 崔焕卿. 混合时钟驱动的自旋神经元器件激活特性和计算性能. 物理学报, 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [9] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [10] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [11] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [12] 陈爱天, 赵永刚. 多铁异质结构中逆磁电耦合效应的研究进展. 物理学报, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [13] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [14] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [15] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [16] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [17] 郝建红, 高辉. 磁存储器环形带切口结构自由层磁化反转的微磁模拟. 物理学报, 2013, 62(5): 057502. doi: 10.7498/aps.62.057502
    [18] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学. 物理学报, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [19] 包瑾, 徐晓光, 姜勇. 自旋阀中电流诱导磁化翻转行为的研究. 物理学报, 2009, 58(11): 7998-8001. doi: 10.7498/aps.58.7998
    [20] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究. 物理学报, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
计量
  • 文章访问数:  3907
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-25
  • 修回日期:  2023-02-26
  • 上网日期:  2023-03-02
  • 刊出日期:  2023-04-20

/

返回文章
返回