搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用

何宇 陈伟斌 洪宾 黄文涛 张昆 陈磊 冯学强 李博 刘菓 孙笑寒 赵萌 张悦

引用本文:
Citation:

热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用

何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦

Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface

He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue
PDF
HTML
导出引用
  • 电流驱动的面内交换偏置场翻转具有无需外磁场辅助、抗磁场干扰以及强磁各向异性等优势, 受到广泛关注. 然而, 在纳米级厚度薄膜系统中, 反铁磁/铁磁异质结的阻塞温度较低, 同时电流脉冲会产生大量的焦耳热, 理论上电流热效应对于交换偏置场翻转有着显著作用, 但是其作用机制缺乏相关研究和验证. 我们制备了一系列反铁磁IrMn厚度不同的Pt/IrMn/Py异质结, 系统性地研究了热效应在电流翻转交换偏置场中的作用机制. 结果表明, 在毫秒级电流脉冲下, 焦耳热能够使得器件升温至阻塞温度以上, 解除反铁磁/铁磁界面的交换耦合, 同时电流产生的奥斯特场和自旋轨道矩能够翻转铁磁磁矩, 在降温过程中完成交换偏置场的翻转. 并且, 在翻转过程中, 反铁磁/铁磁异质结的各向异性磁阻曲线呈现与温度相关的两步磁化翻转现象, 分析表明该现象起源于交换偏置耦合与铁磁直接交换作用之间的竞争关系. 本文的研究结果厘清了热效应在电流驱动交换偏置场翻转过程中的重要作用, 有助于推动基于电控交换偏置场的自旋电子器件发展.
    The current-induced switching of in-plane exchange bias field (Heb) has many advantages, such as switching without assistance of external magnetic field, excellent immunity to magnetic field, and robust magnetic anisotropy. However, the blocking temperature of the nanoscale antiferromagnet/ferromagnet (AFM/FM) heterostructure is relatively low and susceptible to thermal effects. Therefore, the Joule heating theoretically plays a substantial role in the switching of Heb driven by current, but its underlying mechanism requires further investigation and verification. We prepare a series of Pt/IrMn/Py heterostructures with varying antiferromagnet IrMn thicknesses and systematically investigate the role of thermal effects in current-driven Heb switching. These results demonstrate that under millisecond-level current pulses, Joule heating heats the device above the blocking temperature, leading to the decoupling of exchange coupling at AFM/FM interface. Simultaneously, the Oersted field and spin-orbit torque field generated by the current switch the ferromagnetic moments, and then a new Heb will be induced along the direction of the ferromagnetic moments in the cooling process. Furthermore,in the switching process of Heb, the anisotropic magnetoresistance curve of the AFM/FM heterostructure exhibits a temperature-dependent two-step magnetization reversal phenomenon. Theoretical analysis indicates that this phenomenon arises from the competitive relationship between exchange bias coupling at AFM/FM interface and direct exchange coupling between the ferromagnetic moments. The findings of this study elucidate the crucial role of thermal effects in the current-driven switching of Heb, thereby contributing to the advancement of spintronic devices based on electrically controlled Heb.
      通信作者: 张昆, zhang_kun@buaa.edu.cn ; 张悦, yz@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62122008, 61971024, 51901008)资助的课题.
      Corresponding author: Zhang Kun, zhang_kun@buaa.edu.cn ; Zhang Yue, yz@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62122008, 61971024, 51901008).
    [1]

    Cai W, Huang Y, Zhang X, Wang S, Pan Y, Yin J, Shi K, Zhao W 2023 Sci. China Phys. Mech. 66 117503Google Scholar

    [2]

    Jinnai B, Watanabe K, Fukami S, Ohno H 2020 Appl. Phys. Lett. 116 160501Google Scholar

    [3]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, Lai C H 2019 Nat. Mater. 18 335Google Scholar

    [4]

    Liu X H, Edmonds K W, Zhou Z P, Wang K Y 2020 Phys. Rev. Appl. 13 014059Google Scholar

    [5]

    Yun J, Bai Q, Yan Z, Chang M, Mao J, Zuo Y, Yang D, Xi L, Xue D 2020 Adv. Funct. Mat. 30 1909092Google Scholar

    [6]

    Zhang E Z, Deng Y C, Liu X H, Zhan X Z, Zhu T, Wang K Y 2021 Phys. Rev. B 104 134408Google Scholar

    [7]

    Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L, Zhao W 2020 Nat. Electron. 3 757Google Scholar

    [8]

    Liu R, Zhang Y, Yuan Y, Lu Y, Liu T, Chen J, Wei L, Wu D, You B, Zhang W, Du J 2023 Appl. Phys. Lett. 122 062401Google Scholar

    [9]

    Fang B, Sánchez-Tejerina San José L, Chen A, Li Y, Zheng D, Ma Y, Algaidi H, Liu K, Finocchio G, Zhang X 2022 Adv. Funct. Mater. 32 2112406Google Scholar

    [10]

    Xie X, Zhao X, Dong Y, Qu X, Zheng K, Han X, Han X, Fan Y, Bai L, Chen Y, Dai Y, Tian Y, Yan S 2021 Nat. Commun. 12 2473Google Scholar

    [11]

    Huang Q, Guan C, Fan Y, Zhao X, Han X, Dong Y, Xie X, Zhou T, Bai L, Peng Y, Tian Y, Yan S 2022 ACS Nano 16 12462Google Scholar

    [12]

    Zhang K, Chen L, Zhang Y, Hong B, He Y, Lin K, Zhang Z, Zheng Z, Feng X, Zhang Y, Otani Y, Zhao W 2022 Appl. Phys. Rev. 9 011407Google Scholar

    [13]

    Zheng Z Y, Zhang Y, Feng X Q, Zhang K, Nan J, Zhang Z Z, Wang G D, Wang J K, Lei N, Liu D J, Zhang Y G, Zhao W S 2019 Phys. Rev. Appl. 12 044032Google Scholar

    [14]

    Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J P, Fert A, Zhao W 2018 Nat. Electron. 1 582Google Scholar

    [15]

    Ryu J, Thompson R, Park J Y, Kim S J, Choi G, Kang J, Jeong H B, Kohda M, Yuk J M, Nitta J, Lee K J, Park B G 2022 Nat. Electron. 5 217Google Scholar

    [16]

    Zhu D Q, Guo Z X, Du A, Xiong D R, Xiao R, Cai W L, Shi K W, Peng S Z, Cao K H, Lu S Y, Zhu D P, Wang G F, Liu H X, Leng Q W, Zhao W S 2021 IEEE International Electron Devices Meeting (IEDM) San Francisco, America, December 11–15, 2021, p17.5.1

    [17]

    Du A, Zhu D, Cao K, Zhang Z, Guo Z, Shi K, Xiong D, Xiao R, Cai W, Yin J, Lu S, Zhang C, Zhang Y, Luo S, Fert A, Zhao W 2023 Nat. Electron. 6 425Google Scholar

    [18]

    Zheng Z, Zhang Z, Feng X, Zhang K, Zhang Y, He Y, Chen L, Lin K, Zhang Y, Khalili Amiri P, Zhao W 2022 ACS Nano 16 8264Google Scholar

    [19]

    Li D, Yun J, Chen S, Cui B, Guo X, Wu K, Zuo Y, Yang D, Wang J, Xi L 2018 J. Phys. D. Appl. Phys. 51 265003Google Scholar

    [20]

    Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09d728Google Scholar

    [21]

    Prejbeanu I L, Kerekes M, Sousa R C, Sibuet H, Redon O, Dieny B, Nozières J P 2007 J. Phys. Condens. Matter. 19 165218Google Scholar

    [22]

    Rinaldi C, Baldrati L, Di Loreto M, Asa M, Bertacco R, Cantoni M 2018 IEEE Trans. Magn. 54 1Google Scholar

    [23]

    Lee K M, Choi J W, Sok J, Min B-C 2017 AIP Adv. 7 065107Google Scholar

    [24]

    Pajda M, Kudrnovský J, Turek I, Drchal V, Bruno P 2001 Phys. Rev. B 64 174402Google Scholar

    [25]

    Zhao X, Dong Y, Chen W, Xie X, Bai L, Chen Y, Kang S, Yan S, Tian Y 2021 Adv. Funct. Mat. 31 2105359Google Scholar

    [26]

    Fan Y, Han X, Zhao X, Dong Y, Chen Y, Bai L, Yan S, Tian Y 2022 ACS Nano 16 6878Google Scholar

    [27]

    Han X, Fan Y, Wang D, Wang W, Bai L, Chen Y, Yan S, Tian Y 2023 Appl. Phys. Lett. 122 052404Google Scholar

    [28]

    Chen J Y, Thiyagarajah N, Xu H J, Coey J M D 2014 Appl. Phys. Lett. 104 152405Google Scholar

    [29]

    Du Y, Pan G, Moate R, Ohldag H, Kovacs A, Kohn A 2010 Appl. Phys. Lett. 96 222503Google Scholar

    [30]

    Zhang C, Feng X, Zhan Q, Hu Y 2022 Phys. Rev. B 105 174409Google Scholar

    [31]

    Ding S L, Wu R, Fu J B, Wen X, Du H L, Liu S Q, Han J Z, Yang Y C, Wang C S, Zhou D, Yang J B 2015 Appl. Phys. Lett. 107 172404Google Scholar

    [32]

    Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878Google Scholar

    [33]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [34]

    Qiao H, Niu Y, Li X, Mi S, Liu X, Xue J, Wu S, Wang X, Liu Q, Wang J 2022 J. Phys. D. Appl. Phys. 56 025003Google Scholar

  • 图 1  (a) Pt/IrMn/Py/MgO/Ru膜层结构示意图; (b) Pt/IrMn (6 nm)/Py薄膜的面内磁滞回线; (c) 霍尔条器件和测试结构图; Pt/IrMn (6 nm)/Py器件(d) 初始状态和(e)施加不同电流脉冲情况下的AMR曲线; (f) HebIpulse的变化曲线

    Fig. 1.  (a) Schematic illustration of the Pt/IrMn/Py/MgO/Ru sample; (b) in-plane magnetic hysteresis loop of Pt/IrMn (6 nm)/Py film; (c) schematic of Hall bar device and electrical transport measurement; AMR curves of the Pt/IrMn (6 nm)/Py device under (d) initial state and (e) after applying a current pulse Ipulse; (f) Heb as a function of Ipulse.

    图 2  Pt/IrMn (3, 4, 6, 8 nm)/Py器件的(a) Heb和(b) TdIpulse的变化; Pt/IrMn (6 nm)/Py器件的(c) Heb和(d) TdTc = 200, 300, 400 K时随Ipulse的变化; (e) 不同IrMn厚度器件的HebTc大小的变化; (f) $T^* $和TbtIrMn大小的变化

    Fig. 2.  (a) Heb and (b) Td vary with Ipulse of Pt/IrMn (3, 4, 6, 8 nm)/Py devices; (c) Heb and (d) Td vary with Ipulse for Pt/IrMn (6 nm)/Py device at Tc = 200, 300, 400 K; (e) dependence of Heb on Tc for the Pt/IrMn (3, 4, 6, 8 nm)/Py devices; (f) $T^*$ and Tb as a function of tIrMn.

    图 3  (a) Pt/IrMn (6 nm)/Py器件在不同外磁场Hext下的AMR曲线; (b) 恒定电流脉冲Ipulse = –32 mA或Ipulse = +32 mA下, HebHext大小的变化关系; (c) 施加不同大小电流时Pt/IrMn (3 nm)/Py器件的AMR曲线; (d) Heb翻转时器件的Hc、电流产生的HOe以及改变Heb翻转极性的Hext大小随IrMn厚度的变化关系

    Fig. 3.  (a) AMR curves of the Pt/IrMn (6 nm)/Py device under a constant current pulse Ipulse = +32 mA and varying Hext; (b) Heb varies with Hext for the Pt/IrMn (6 nm)/Py device under Ipulse = ±32 mA; (c) AMR curves of the Pt/IrMn (3 nm)/Py device under different Ipulse; (d) HOe, Hc and Hext of the Pt/IrMn (3, 4, 6, 8 nm)/Py devices when Heb switches.

    图 4  (a) 在Tc = 300 K时, Pt/IrMn (4 nm)/Py器件施加电流脉冲Ipulse后测得的AMR曲线以及其(b) 对应的反铁磁和铁磁序状态; (c) 在Tc = 360 K时, Pt/IrMn (4 nm)/Py器件施加电流脉冲Ipulse后测得的AMR曲线; (d) 在Tc = 300 K时, 施加电流脉冲Ipulse = –28 mA后, Pt/IrMn (4 nm)/Py器件在Tc = 300 K和Tc = 360 K时测得的AMR曲线; (e) 在Tc = 360 K时, 施加电流脉冲Ipulse = –23 mA后, Pt/IrMn (4 nm)/Py器件在Tc = 300 K和Tc = 360 K时测得的AMR曲线; Pt/IrMn (4 nm)/Py器件在(f) Tc = 360 K和(g) Tc = 300 K时的反铁磁和铁磁序状态

    Fig. 4.  (a) AMR curves and (b) the corresponding antiferromagnetic and ferromagnetic states of the Pt/IrMn (4 nm)/Py device after applying a Ipulse at Tc = 300 K; (c) AMR curves of the Pt/IrMn (4 nm)/Py device after applying a Ipulse at Tc = 360 K; (d) AMR curves of the Pt/IrMn (4 nm)/Py device at Tc=300 K and Tc = 360 K after applying a Ipulse = –28 mA at Tc = 300 K; (e) AMR curves of the Pt/IrMn (4 nm)/Py device at Tc = 300 K and Tc = 360 K after applying a Ipulse = –23 mA at Tc=360 K; Antiferromagnetic and ferromagnetic states of the Pt/IrMn (4 nm)/Py device at (f) Tc = 360 K and (g) Tc = 300 K.

  • [1]

    Cai W, Huang Y, Zhang X, Wang S, Pan Y, Yin J, Shi K, Zhao W 2023 Sci. China Phys. Mech. 66 117503Google Scholar

    [2]

    Jinnai B, Watanabe K, Fukami S, Ohno H 2020 Appl. Phys. Lett. 116 160501Google Scholar

    [3]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, Lai C H 2019 Nat. Mater. 18 335Google Scholar

    [4]

    Liu X H, Edmonds K W, Zhou Z P, Wang K Y 2020 Phys. Rev. Appl. 13 014059Google Scholar

    [5]

    Yun J, Bai Q, Yan Z, Chang M, Mao J, Zuo Y, Yang D, Xi L, Xue D 2020 Adv. Funct. Mat. 30 1909092Google Scholar

    [6]

    Zhang E Z, Deng Y C, Liu X H, Zhan X Z, Zhu T, Wang K Y 2021 Phys. Rev. B 104 134408Google Scholar

    [7]

    Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L, Zhao W 2020 Nat. Electron. 3 757Google Scholar

    [8]

    Liu R, Zhang Y, Yuan Y, Lu Y, Liu T, Chen J, Wei L, Wu D, You B, Zhang W, Du J 2023 Appl. Phys. Lett. 122 062401Google Scholar

    [9]

    Fang B, Sánchez-Tejerina San José L, Chen A, Li Y, Zheng D, Ma Y, Algaidi H, Liu K, Finocchio G, Zhang X 2022 Adv. Funct. Mater. 32 2112406Google Scholar

    [10]

    Xie X, Zhao X, Dong Y, Qu X, Zheng K, Han X, Han X, Fan Y, Bai L, Chen Y, Dai Y, Tian Y, Yan S 2021 Nat. Commun. 12 2473Google Scholar

    [11]

    Huang Q, Guan C, Fan Y, Zhao X, Han X, Dong Y, Xie X, Zhou T, Bai L, Peng Y, Tian Y, Yan S 2022 ACS Nano 16 12462Google Scholar

    [12]

    Zhang K, Chen L, Zhang Y, Hong B, He Y, Lin K, Zhang Z, Zheng Z, Feng X, Zhang Y, Otani Y, Zhao W 2022 Appl. Phys. Rev. 9 011407Google Scholar

    [13]

    Zheng Z Y, Zhang Y, Feng X Q, Zhang K, Nan J, Zhang Z Z, Wang G D, Wang J K, Lei N, Liu D J, Zhang Y G, Zhao W S 2019 Phys. Rev. Appl. 12 044032Google Scholar

    [14]

    Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J P, Fert A, Zhao W 2018 Nat. Electron. 1 582Google Scholar

    [15]

    Ryu J, Thompson R, Park J Y, Kim S J, Choi G, Kang J, Jeong H B, Kohda M, Yuk J M, Nitta J, Lee K J, Park B G 2022 Nat. Electron. 5 217Google Scholar

    [16]

    Zhu D Q, Guo Z X, Du A, Xiong D R, Xiao R, Cai W L, Shi K W, Peng S Z, Cao K H, Lu S Y, Zhu D P, Wang G F, Liu H X, Leng Q W, Zhao W S 2021 IEEE International Electron Devices Meeting (IEDM) San Francisco, America, December 11–15, 2021, p17.5.1

    [17]

    Du A, Zhu D, Cao K, Zhang Z, Guo Z, Shi K, Xiong D, Xiao R, Cai W, Yin J, Lu S, Zhang C, Zhang Y, Luo S, Fert A, Zhao W 2023 Nat. Electron. 6 425Google Scholar

    [18]

    Zheng Z, Zhang Z, Feng X, Zhang K, Zhang Y, He Y, Chen L, Lin K, Zhang Y, Khalili Amiri P, Zhao W 2022 ACS Nano 16 8264Google Scholar

    [19]

    Li D, Yun J, Chen S, Cui B, Guo X, Wu K, Zuo Y, Yang D, Wang J, Xi L 2018 J. Phys. D. Appl. Phys. 51 265003Google Scholar

    [20]

    Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09d728Google Scholar

    [21]

    Prejbeanu I L, Kerekes M, Sousa R C, Sibuet H, Redon O, Dieny B, Nozières J P 2007 J. Phys. Condens. Matter. 19 165218Google Scholar

    [22]

    Rinaldi C, Baldrati L, Di Loreto M, Asa M, Bertacco R, Cantoni M 2018 IEEE Trans. Magn. 54 1Google Scholar

    [23]

    Lee K M, Choi J W, Sok J, Min B-C 2017 AIP Adv. 7 065107Google Scholar

    [24]

    Pajda M, Kudrnovský J, Turek I, Drchal V, Bruno P 2001 Phys. Rev. B 64 174402Google Scholar

    [25]

    Zhao X, Dong Y, Chen W, Xie X, Bai L, Chen Y, Kang S, Yan S, Tian Y 2021 Adv. Funct. Mat. 31 2105359Google Scholar

    [26]

    Fan Y, Han X, Zhao X, Dong Y, Chen Y, Bai L, Yan S, Tian Y 2022 ACS Nano 16 6878Google Scholar

    [27]

    Han X, Fan Y, Wang D, Wang W, Bai L, Chen Y, Yan S, Tian Y 2023 Appl. Phys. Lett. 122 052404Google Scholar

    [28]

    Chen J Y, Thiyagarajah N, Xu H J, Coey J M D 2014 Appl. Phys. Lett. 104 152405Google Scholar

    [29]

    Du Y, Pan G, Moate R, Ohldag H, Kovacs A, Kohn A 2010 Appl. Phys. Lett. 96 222503Google Scholar

    [30]

    Zhang C, Feng X, Zhan Q, Hu Y 2022 Phys. Rev. B 105 174409Google Scholar

    [31]

    Ding S L, Wu R, Fu J B, Wen X, Du H L, Liu S Q, Han J Z, Yang Y C, Wang C S, Zhou D, Yang J B 2015 Appl. Phys. Lett. 107 172404Google Scholar

    [32]

    Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878Google Scholar

    [33]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [34]

    Qiao H, Niu Y, Li X, Mi S, Liu X, Xue J, Wu S, Wang X, Liu Q, Wang J 2022 J. Phys. D. Appl. Phys. 56 025003Google Scholar

  • [1] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转. 物理学报, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [3] 张玫玫, 吴意赟, 于洁, 屠娟, 章东. 脉冲占空比对磁性微泡介导的聚焦超声温升效应的影响. 物理学报, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [4] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [5] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [6] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [7] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [8] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法. 物理学报, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [9] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [10] 朱金荣, 香妹, 胡经国. 铁磁/反铁磁双层膜系统中的磁畴动力学行为. 物理学报, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [11] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [12] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [13] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应. 物理学报, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [14] 王立世, 潘春旭, 蔡启舟, 魏伯康. 等离子体电解氧化过程中单个稳态微放电的热效应研究. 物理学报, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [15] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [16] 李 岩, 陈庆永, 姜宏伟, 王艾玲, 郑 鹉. PtMn层厚度对NiFe/PtMn双层膜交换偏置形成及热稳定性的影响. 物理学报, 2006, 55(12): 6647-6650. doi: 10.7498/aps.55.6647
    [17] 李 岩, 陈庆永, 姜宏伟. (Ni0.81Fe0.19)1-xCrx作为种子层对NiFe/PtMn双层膜交换偏置的影响. 物理学报, 2006, 55(5): 2543-2547. doi: 10.7498/aps.55.2543
    [18] 姜宏伟, 李明华, 王艾玲, 郑鹉. NiFe/FeMn双层膜的交换耦合. 物理学报, 2004, 53(4): 1232-1235. doi: 10.7498/aps.53.1232
    [19] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] 李明华, 于广华, 姜宏伟, 蔡建旺, 朱逢吾. Ta,Ta/Cu缓冲层对NiFe/Fe Mn双层膜交换偏置场的影响. 物理学报, 2001, 50(11): 2230-2234. doi: 10.7498/aps.50.2230
计量
  • 文章访问数:  3086
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 修回日期:  2023-09-27
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-20

/

返回文章
返回