搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三端磁隧道结的稳定性分析

王日兴 李雪 李连 肖运昌 许思维

引用本文:
Citation:

三端磁隧道结的稳定性分析

王日兴, 李雪, 李连, 肖运昌, 许思维

Stability analysis in three-terminal magnetic tunnel junction

Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei
PDF
HTML
导出引用
  • 在理论上研究了磁隧道结/重金属层组成的三端磁隧道结中磁性状态的稳定性. 以包含自旋转移矩和自旋轨道矩的Landau-Lifshitz-Gilbert (LLG)方程为基础, 通过对平衡点进行线性稳定性分析, 得到了以钉扎层磁化向量方向和自旋轨道矩电流密度为控制参数的相图. 相图中包括平面内的进动态和稳定态以及伸出膜面的进动态和稳定态. 当钉扎层磁化向量在垂直薄膜平面内旋转时, 通过调节钉扎层磁化向量方向, 可以实现自由层磁化向量从稳定态到进动态的转化. 当钉扎层磁化向量在薄膜平面内旋转时, 在钉扎层磁化向量方向与自由层易磁化轴方向平行或者反平行的结构中, 失稳电流最小, 当钉扎层磁化向量方向逐渐偏离这两个方向时, 失稳电流不断增加. 调节自旋转移矩电流密度, 可以实现磁化翻转, 在自旋轨道矩的辅助下, 可以减小翻转时间. 相图的正确性通过画不同磁性状态磁化向量随时间的演化轨迹得到了验证.
    Spin-transfer torque-based magnetic random access memory is becoming more and more attractive in industry due to its non-volatility, fast switching speed and infinite endurance. However, it suffers energy and speed bottlenecks, so the magnetic tunnel junction urgently needs a new write scheme. Compared with the spin-transfer torque, emerging spin-orbit torque will replace spin-transfer torque as a new write scheme of magnetic storage technology for its faster writing speed and avoiding the barrier breakdown. A three-terminal magnetic tunnel junction consists of magnetic tunnel junction/heavy metal structure offers a promising perspective from a technological point of view in the design of new generation of magnetic random access memory, for it is possible to control the magnetization dynamics through two current densities of spin-transfer torque and the spin-orbit torque. In this paper, the stability of magnetic states in the three-terminal magnetic tunnel junction is studied theoretically. Through linearizing the Landau-Lifshitz-Gilbert equation including the spin-transfer torque and the spin-orbit torque defined in the spherical coordinates, the new equilibrium directions and linear differential equations are obtained. Performing linear stability analysis of the new equilibrium directions, the phase diagrams defined by the direction of pinned-layer magnetization vector and the current density of spin-orbit torque are obtained. Several magnetic states are distinguished in the phase diagram, such as in-plane precessional and stable states, out-of-plane precessional and stable states. When the pinned-layer magnetization vector rotates out of the film plane, through adjusting the direction of pinned-layer magnetization vector, the switching from stable state to precessional one can be realized. Orientating the pinned-layer magnetization vector in the film plane, neither the out-of-plane precession nor stable states emerges for the current density of spin-orbit torque and spin-transfer torque are relatively small. The instability current takes a minimum value with the pinned-layer magnetization vector nearly parallel or antiparallel to the easy axis of free layer and increases with the direction of pinned-layer magnetization vector deviating from these two locations. The magnetization reversal can be realized through adjusting the current density of spin-transfer torque, and the reversal time can decrease greatly under the assisting of spin-orbit torque. By showing the dependence of magnetization vector on the time of different magnetic states, the validity of phase diagram is confirmed. The selecting of the different directions of the pinned-layer magnetization vector provides an alternative way to control the current-driven magnetization dynamics. This will provide useful guide for the application of three-terminal magnetic tunnel junction.
      通信作者: 王日兴, wangrixing1982@sina.com
    • 基金项目: 国家自然科学基金 (批准号: 11704120, 11847159)和常德市科技局项目 (批准号: 2016KZ22, 2018J048)资助的课题
      Corresponding author: Wang Ri-Xing, wangrixing1982@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704120, 11847159) and the Research Foundation of Science and Technology Bureau of Changde City (Grant Nos. 2016KZ22, 2018J048)
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [4]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 285 867Google Scholar

    [5]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [6]

    张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427Google Scholar

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427Google Scholar

    [7]

    包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998Google Scholar

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998Google Scholar

    [8]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501Google Scholar

    [9]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118Google Scholar

    [10]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS Bulletin 43 352Google Scholar

    [11]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nature Electronics 1 508Google Scholar

    [12]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204

    [13]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [14]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physica, Mechanica & Astronomica 46 107306

    [15]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [16]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [17]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [18]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [19]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nature Mater 16 712Google Scholar

    [20]

    Sheng Y, Li Y C, Ma X Q, Wang K Y 2018 Appl. Phys. Lett. 113 112406Google Scholar

    [21]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Scientific Reports 8 382Google Scholar

    [22]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [23]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [24]

    Dyakonov M I, Perel V I 1971 Phys. Lett. 35 459Google Scholar

    [25]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [26]

    Zhang S F 2000 Phys. Rev. Lett. 85 393Google Scholar

    [27]

    Tomasello R, Carpentieri M, Finocchio G 2013 Appl. Phys. Lett. 103 252408Google Scholar

    [28]

    Wang Z H, Zhao W S, Deng E, Klein J O, Chappert C 2015 Journal of Physics D: Applied Physics 48 065001Google Scholar

    [29]

    Grollier J, Cros V, Jaffrès H, Hamzic A, George J M, Faini G, Youssef J. Ben, Le Gall H , Fert A 2003 Phys. Rev. B 67 174402Google Scholar

    [30]

    Bazaliy Ya B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421Google Scholar

    [31]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935Google Scholar

    [32]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439Google Scholar

    [33]

    刘秉正, 彭建华 2005 非线性动力学 (北京: 高等教育出版社) 第34页

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese)

    [34]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436Google Scholar

    [35]

    Zhou Y, Bonetti S, Zha C L, Åkerman J 2009 New J. Phys. 11 103028Google Scholar

    [36]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417Google Scholar

    [37]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905Google Scholar

    [38]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502Google Scholar

    [39]

    王日兴, 贺鹏斌, 肖运昌, 李建英 2015 物理学报 64 137201Google Scholar

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201Google Scholar

    [40]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 物理学报 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

    [41]

    Houssameddine D, Ebels U, Delaët B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Buda-Prejbeanu L D, Cyrille M C, Redon O, Dieny B 2007 Nature Materials 6 447Google Scholar

  • 图 1  理论模型和坐标系

    Fig. 1.  Theoretical mode and coordinate system.

    图 2  以钉扎层磁化向量极角$ \theta_{\rm p} $和自旋轨道矩电流密度$ J_{\rm SHE} $为控制参数的相图

    Fig. 2.  The phase diagram defined in parameter space spanned by the polar angle of pinned-layer magnetization vector $ \theta_{\rm p} $ and the current density of spin-orbit torque $ J_{\rm SHE} $

    图 3  对于图2中不同区域a, b, c,$ a^{\prime} $,$ b^{\prime} $,$ c^{\prime} $六点, 自由层磁化向量随时间的演化轨迹 (a)和($ {\rm a}^{\prime} $)准平行稳定态或平面内的进动态; (b)和($ {\rm b}^{\prime} $)伸出膜面的进动态; (c)和($ {\rm c}^{\prime} $)伸出膜面的稳定态

    Fig. 3.  The time evolutions of free-layer magnetization vector for six points a, b, $ c, a^{\prime} $,$ b^{\prime} $ and $ c^{\prime} $ in different regions of Fig. 2. (a) and ($ {\rm a}^{\prime} $) quasi-P or IPP state; (b) and ($ {\rm b}^{\prime} $) OPP state; (c) and ($ {\rm c}^{\prime} $) OPS states.

    图 4  以钉扎层磁化向量方位角$ \phi_{\rm p} $和自旋轨道矩电流密度$ J_{\rm SHE} $为控制参数的相图

    Fig. 4.  The phase diagram defined in parameter space spanned by the azimuthal angle of pinned-layer magnetization vector $ \phi_{\rm p} $ and the current density of spin-orbit torque $ J_{\rm SHE} $.

    图 5  对应图4中的“a”点, 自由层初始磁化沿x方向时磁化向量三个分量$ m_{x} $, $ m_{y} $$ m_{z} $在不同自旋矩驱动下随时间的演化 (a)自旋转移矩激发的平面内的稳定态; (b)自旋转移矩驱动磁化翻转; (c)自旋转移矩和自旋轨道矩共同激发的平面内的进动态; (d)自旋转移矩和自旋轨道矩共同驱动磁化翻转

    Fig. 5.  The time evolutions of three components $ m_{x} $, $ m_{y} $ and $ m_{z} $ driven by different spin torque in free-layer magnetization vector for point ‘a’ of Fig. 4 with the initial magnetization along x direction: (a) IPS state excited by spin-transfer torque; (b) magnetization reversal driven by spin-transfer torque; (c) IPP state excited by spin-transfer torque and spin-orbit torque; (d) magnetization reversal driven by spin-transfer torque and spin-orbit torque.

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [4]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 285 867Google Scholar

    [5]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [6]

    张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427Google Scholar

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427Google Scholar

    [7]

    包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998Google Scholar

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998Google Scholar

    [8]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501Google Scholar

    [9]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118Google Scholar

    [10]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS Bulletin 43 352Google Scholar

    [11]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nature Electronics 1 508Google Scholar

    [12]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204

    [13]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [14]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physica, Mechanica & Astronomica 46 107306

    [15]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [16]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [17]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [18]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [19]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nature Mater 16 712Google Scholar

    [20]

    Sheng Y, Li Y C, Ma X Q, Wang K Y 2018 Appl. Phys. Lett. 113 112406Google Scholar

    [21]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Scientific Reports 8 382Google Scholar

    [22]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [23]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [24]

    Dyakonov M I, Perel V I 1971 Phys. Lett. 35 459Google Scholar

    [25]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [26]

    Zhang S F 2000 Phys. Rev. Lett. 85 393Google Scholar

    [27]

    Tomasello R, Carpentieri M, Finocchio G 2013 Appl. Phys. Lett. 103 252408Google Scholar

    [28]

    Wang Z H, Zhao W S, Deng E, Klein J O, Chappert C 2015 Journal of Physics D: Applied Physics 48 065001Google Scholar

    [29]

    Grollier J, Cros V, Jaffrès H, Hamzic A, George J M, Faini G, Youssef J. Ben, Le Gall H , Fert A 2003 Phys. Rev. B 67 174402Google Scholar

    [30]

    Bazaliy Ya B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421Google Scholar

    [31]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935Google Scholar

    [32]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439Google Scholar

    [33]

    刘秉正, 彭建华 2005 非线性动力学 (北京: 高等教育出版社) 第34页

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese)

    [34]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436Google Scholar

    [35]

    Zhou Y, Bonetti S, Zha C L, Åkerman J 2009 New J. Phys. 11 103028Google Scholar

    [36]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417Google Scholar

    [37]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905Google Scholar

    [38]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502Google Scholar

    [39]

    王日兴, 贺鹏斌, 肖运昌, 李建英 2015 物理学报 64 137201Google Scholar

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201Google Scholar

    [40]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 物理学报 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

    [41]

    Houssameddine D, Ebels U, Delaët B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Buda-Prejbeanu L D, Cyrille M C, Redon O, Dieny B 2007 Nature Materials 6 447Google Scholar

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转. 物理学报, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [3] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [5] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [6] 袁佳卉, 杨晓阔, 张斌, 陈亚博, 钟军, 危波, 宋明旭, 崔焕卿. 混合时钟驱动的自旋神经元器件激活特性和计算性能. 物理学报, 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [7] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析. 物理学报, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [8] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [9] 陈爱天, 赵永刚. 多铁异质结构中逆磁电耦合效应的研究进展. 物理学报, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [10] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [11] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [12] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [13] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [14] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [15] 郝建红, 高辉. 磁存储器环形带切口结构自由层磁化反转的微磁模拟. 物理学报, 2013, 62(5): 057502. doi: 10.7498/aps.62.057502
    [16] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析. 物理学报, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [17] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学. 物理学报, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [18] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究. 物理学报, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [19] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [20] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析. 物理学报, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
计量
  • 文章访问数:  7208
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-16
  • 修回日期:  2019-08-13
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回