搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋转移矩效应激发的非线性磁化动力学

金伟 万振茂 刘要稳

引用本文:
Citation:

自旋转移矩效应激发的非线性磁化动力学

金伟, 万振茂, 刘要稳

Nonlinear magnetization dynamics excited by the spin-transfer torque effect

Jin Wei, Wan Zhen-Mao, Liu Yao-Wen
PDF
导出引用
  • 本文基于宏观磁矩(macrospin)的Landau-Lifshitz-Gilbert方程,模拟研究了磁性自旋阀结构中由垂直膜面流向的自旋极化电流所激发的磁化转动动力学特性.直流自旋极化电流借助自旋转移矩效应可驱动磁矩翻转或作周期性振荡,交流电可以激发出具有混沌行为的磁矩振荡.展示了磁矩振荡行为随电流强度变化而发生倍周期分岔、直至混沌振荡的行为规律.
    The macrospin model based on Landau-Lifshitz-Gilbert equation is used to study the current-induced magnetization dynamics in magnetic spin valves. We find that the DC spin-polarized current could either switch the magnetization of free layer or excite the steady-state precessional motion via the so-called spin-transfer torque effect. The AC current could drive the chaotic oscillations. The route to chaotic oscillation depending on the strength of current is demonstrated through a series of period doubling bifurcations.
    • 基金项目: 国家自然科学基金(批准号:50871075)和教育部新世纪优秀人才基金(批准号:NCET-10-0603)资助的课题.
    [1]

    Slonczewski J C 1996J. Magn. Magn. Mater. 159 L1

    [2]

    Berger L 1996 Phys. Rev. B 54 9353

    [3]

    (London) 437 393

    [4]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 185 867

    [5]

    Liu Y W, Zhang Z Z, Freitas P P,Martins J L 2003 Appl. Phys. Lett. 82 2871

    [6]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature (London) 425 380

    [7]

    Yoda H, Kishi T, Nagase T, Yoshikawa M, Nishiyama K 2010 The 11th Joint MMM-Intermag conference, Washington D C Jan. 18-22 (Invited talk, AA-02)

    [8]

    Qiu Y C, Zhang Z Z, Jin Q Y, Liu Y W 2009 Appl. Phys. Lett. 95 052507

    [9]

    Lee K J, Deac A, Redon O, Nozieres J P, Dieny B 2004 Nature Mater. 3 877

    [10]

    Jin W, Liu Y W, Chen H 2006 IEEE T. Magn. 42 2682

    [11]

    Rippard W H, Pufall M R, Kaka S, Silva T J, Russek S E, Katine J A 2005 Phys. Rev. Lett. 95 067203

    [12]

    Mancoff F B, Rizzo N D, Engel B N, Tehrani S 2005 Nature

    [13]

    Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E, Katine J A 2005 Nature (London) 437 389

    [14]

    Yang Z, Zhang S, Li Charles Y 2007 Phys. Rev. Lett. 99 134101

    [15]

    Liu Y W, Zhang Z Z, Wang J G, Freitas P P, Martins J L 2003 J. Appl. Phys. 93 8385

    [16]

    Jin W, Liu Y W 2010 Chin. Phys. B. 19 037001

    [17]

    Zhao H, Liu Y W, Wang Y H, Hu B B 1998 Phys. Rev. E 58 4383

    [18]

    Hao B L 1993 Starting with parabolas: an introduction to chaotic dynamics (Shanghai: Shanghai Scientific and Technical Publishers) p28 (in Chinese) [郝伯林 1993 从抛物线谈起——混沌动力学引论 (上海: 上海科技教育出版社) 第28页]

    [19]

    Liu Y W, Zhao H, Wang Y H 1999 Acta Phys. Sin. 48 198 (in Chinese) [刘要稳、赵 鸿、汪映海 1999 物理学报 48 198]

  • [1]

    Slonczewski J C 1996J. Magn. Magn. Mater. 159 L1

    [2]

    Berger L 1996 Phys. Rev. B 54 9353

    [3]

    (London) 437 393

    [4]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 185 867

    [5]

    Liu Y W, Zhang Z Z, Freitas P P,Martins J L 2003 Appl. Phys. Lett. 82 2871

    [6]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature (London) 425 380

    [7]

    Yoda H, Kishi T, Nagase T, Yoshikawa M, Nishiyama K 2010 The 11th Joint MMM-Intermag conference, Washington D C Jan. 18-22 (Invited talk, AA-02)

    [8]

    Qiu Y C, Zhang Z Z, Jin Q Y, Liu Y W 2009 Appl. Phys. Lett. 95 052507

    [9]

    Lee K J, Deac A, Redon O, Nozieres J P, Dieny B 2004 Nature Mater. 3 877

    [10]

    Jin W, Liu Y W, Chen H 2006 IEEE T. Magn. 42 2682

    [11]

    Rippard W H, Pufall M R, Kaka S, Silva T J, Russek S E, Katine J A 2005 Phys. Rev. Lett. 95 067203

    [12]

    Mancoff F B, Rizzo N D, Engel B N, Tehrani S 2005 Nature

    [13]

    Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E, Katine J A 2005 Nature (London) 437 389

    [14]

    Yang Z, Zhang S, Li Charles Y 2007 Phys. Rev. Lett. 99 134101

    [15]

    Liu Y W, Zhang Z Z, Wang J G, Freitas P P, Martins J L 2003 J. Appl. Phys. 93 8385

    [16]

    Jin W, Liu Y W 2010 Chin. Phys. B. 19 037001

    [17]

    Zhao H, Liu Y W, Wang Y H, Hu B B 1998 Phys. Rev. E 58 4383

    [18]

    Hao B L 1993 Starting with parabolas: an introduction to chaotic dynamics (Shanghai: Shanghai Scientific and Technical Publishers) p28 (in Chinese) [郝伯林 1993 从抛物线谈起——混沌动力学引论 (上海: 上海科技教育出版社) 第28页]

    [19]

    Liu Y W, Zhao H, Wang Y H 1999 Acta Phys. Sin. 48 198 (in Chinese) [刘要稳、赵 鸿、汪映海 1999 物理学报 48 198]

计量
  • 文章访问数:  8097
  • PDF下载量:  920
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-17
  • 修回日期:  2010-05-04
  • 刊出日期:  2011-01-15

自旋转移矩效应激发的非线性磁化动力学

  • 1. (1)同济大学物理系,上海 200092; (2)同济大学物理系,上海 200092;安徽师范大学物理与电子信息学院,芜湖 241000
    基金项目: 国家自然科学基金(批准号:50871075)和教育部新世纪优秀人才基金(批准号:NCET-10-0603)资助的课题.

摘要: 本文基于宏观磁矩(macrospin)的Landau-Lifshitz-Gilbert方程,模拟研究了磁性自旋阀结构中由垂直膜面流向的自旋极化电流所激发的磁化转动动力学特性.直流自旋极化电流借助自旋转移矩效应可驱动磁矩翻转或作周期性振荡,交流电可以激发出具有混沌行为的磁矩振荡.展示了磁矩振荡行为随电流强度变化而发生倍周期分岔、直至混沌振荡的行为规律.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回