搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转致密双星的引力波特征

王玉诏 伍歆 钟双英

引用本文:
Citation:

旋转致密双星的引力波特征

王玉诏, 伍歆, 钟双英

Characterization of gravitational waves from spinning compact binaries

Wang Yu-Zhao, Wu Xin, Zhong Shuang-Ying
PDF
导出引用
  • 研究了轨道和旋转效果到2.5阶后牛顿旋转致密双星拉格朗日动力学与引力波的关系, 分析了有序和混沌轨道的引力波特征.发现当加速度不考虑辐射项时, 有序双星系统辐射的引力波具有周期或拟周期的特征, 而混沌双星系统辐射的引力波却具有明显的混沌特征.当加速度含有辐射项贡献时, 双星必会出现并合现象.此时, 原保守有序双星系统需较长时间才能完成并合过程, 引力波形在双星并合前仍保留拟周期的基本特点;然而, 原保守混沌双星系统仅在较短时间内就会并合, 但因并合时间太短, 无法获取足够的动力学信息导致引力波形的特征不易分辨.
    Some characterizations of gravitational waves emitted from the 2.5 post-Newtonian order Lagrangian dynamics of spinning compact binaries including the next-order spin-orbit contribution and the radiative reaction are detailed. The relationship between the regular and chaotic dynamics and the gravitational waveforms is also described. When the radiative reaction term does not appear in the equations of motion, the gravitational waves are periodic/quasi-periodic for an order conservative binary system, but they seem to be typically irregular for a chaotic one. On the other hand, the binary systems become dissipative and should coalesce if the radiative reaction term is added to the equations of motion. In the dissipative case, the original ordered conservative system can still give regular gravitational waveforms in such a long time before the occurrence of the merging orbits. However, the coalescence time of the binary system corresponding to its original chaotic conservative system is too short to obtain enough information about the characterization of the gravitational waveforms.
    • 基金项目: 国家自然科学基金(批准号: 10873007, 11173012, 11178002, 11165011)和南昌大学创新团队项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10873007, 11173012, 11178002, 11165011) and the Program for Innovative Research Team of Nanchang University, China.
    [1]

    Kidder L E 1995 Phys. Rev. D 52 821

    [2]

    Will C M, Wiseman A G 1996 Phys. Rev. D 54 4813

    [3]

    Gopakumar A, Iyer B R 2002 Phys. Rev. D 65 084011

    [4]

    Blanchet L, Faye G, Iyer B R, Sinha S 2008 Class. Quant. Grav. 25 165003

    [5]

    Tagoshi H, Ohashi A, Owen B J 2001 Phys. Rev. D 63 044006

    [6]

    Faye G, Blanchet L, Buonanno A 2006 Phys. Rev. D 74 104033

    [7]

    Blanchet L, Buonanno A, Faye G 2006 Phys. Rev. D 74 104034

    [8]

    Buonanno A, Chen Y, Damour T 2006 Phys. Rev. D 74 104005

    [9]

    Hergt S, Schafer G 2008 Phys. Rev. D 78 101503

    [10]

    Kokubun F 1998 Phys. Rev. D 57 2610

    [11]

    Suzuki S, Maeda K I 1999 Phys. Rev. D 61 024005

    [12]

    Kiuchi K, Maeda K I 2004 Phys. Rev. D 70 064036

    [13]

    Kiuchi K, Koyama H, Maeda K I 2007 Phys. Rev. D 76 024018

    [14]

    Wang Y, Wu X 2011 Commun. Theor. Phys. 56 1045

    [15]

    Zhong S Y, Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 物理学报 61 120401]

    [16]

    Levin J 2000 Phys. Rev. Lett. 84 3515

    [17]

    Schnittman J D, Rasio F A 2001 Phys. Rev. Lett. 87 121101

    [18]

    Cornish N J, Levin J 2002 Phys. Rev. Lett. 89 179001

    [19]

    Konigsdorffer C, Gopakumar A 2005 Phys. Rev. D 71 024039

    [20]

    Hartl M D, Buonanno A 2005 Phys. Rev. D 71 024027

    [21]

    Levin J 2006 Phys. Rev. D 74 124027

    [22]

    Wu X, Xie Y 2007 Phys. Rev. D 76 124004

    [23]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [24]

    Wu X, Xie Y 2010 Phys. Rev. D 81 084045

    [25]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [26]

    Zhong S Y, Wu X 2011 Acta Phys. Sin. 60 090402 (in Chinese) [钟双英, 伍歆 2011 物理学报 60 090402]

    [27]

    Chen J H, Wang Y J 2003 Chin. Phys. 12 836

    [28]

    Chen J H, Wang Y J 2004 Chin. Phys. 13 583

    [29]

    Chen J H, Wang Y J 2005 Chin. Phys. 14 1282

    [30]

    Chen J H, Wang Y J 2006 Chin. Phys. 15 1705

    [31]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [32]

    Galaviz P, Brugmann 2011 Phys. Rev. D 83 084013

    [33]

    Wang Y, Wu X 2011 Class. Quantum Grav. 28 025010

    [34]

    Wu X, Zhong S Y 2011Gen. Relat. Gravit. 43 2185

    [35]

    Wu X, Huang T Y 2003 Phys. Lett. A 313 77

    [36]

    Froeschle C, Lega E, Gonczi R 1997 Celest. Mech. Dyn. Astron. 67 41

    [37]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

    [38]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李荣, 伍歆 2010 物理学报 59 7135]

    [39]

    Li R, Wu X 2011 Eur. Phys. J. Plus 126 73

    [40]

    Di G H, Xu Y, Xu W, Gu R C 2011 Acta Phys. Sin. 60 020504 (in Chinese) [狄根虎, 许勇, 徐伟, 顾仁财 2011 物理学报 60 020504]

    [41]

    Sun K H, Liu X, Zhu C X 2010 Chin. Phys. B 19 110510

    [42]

    Baker J G, van Meter J R, McWilliams S T, Centrella J, Kelly B J 2007 Phys. Rev. Lett. 99 181101

  • [1]

    Kidder L E 1995 Phys. Rev. D 52 821

    [2]

    Will C M, Wiseman A G 1996 Phys. Rev. D 54 4813

    [3]

    Gopakumar A, Iyer B R 2002 Phys. Rev. D 65 084011

    [4]

    Blanchet L, Faye G, Iyer B R, Sinha S 2008 Class. Quant. Grav. 25 165003

    [5]

    Tagoshi H, Ohashi A, Owen B J 2001 Phys. Rev. D 63 044006

    [6]

    Faye G, Blanchet L, Buonanno A 2006 Phys. Rev. D 74 104033

    [7]

    Blanchet L, Buonanno A, Faye G 2006 Phys. Rev. D 74 104034

    [8]

    Buonanno A, Chen Y, Damour T 2006 Phys. Rev. D 74 104005

    [9]

    Hergt S, Schafer G 2008 Phys. Rev. D 78 101503

    [10]

    Kokubun F 1998 Phys. Rev. D 57 2610

    [11]

    Suzuki S, Maeda K I 1999 Phys. Rev. D 61 024005

    [12]

    Kiuchi K, Maeda K I 2004 Phys. Rev. D 70 064036

    [13]

    Kiuchi K, Koyama H, Maeda K I 2007 Phys. Rev. D 76 024018

    [14]

    Wang Y, Wu X 2011 Commun. Theor. Phys. 56 1045

    [15]

    Zhong S Y, Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 物理学报 61 120401]

    [16]

    Levin J 2000 Phys. Rev. Lett. 84 3515

    [17]

    Schnittman J D, Rasio F A 2001 Phys. Rev. Lett. 87 121101

    [18]

    Cornish N J, Levin J 2002 Phys. Rev. Lett. 89 179001

    [19]

    Konigsdorffer C, Gopakumar A 2005 Phys. Rev. D 71 024039

    [20]

    Hartl M D, Buonanno A 2005 Phys. Rev. D 71 024027

    [21]

    Levin J 2006 Phys. Rev. D 74 124027

    [22]

    Wu X, Xie Y 2007 Phys. Rev. D 76 124004

    [23]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [24]

    Wu X, Xie Y 2010 Phys. Rev. D 81 084045

    [25]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [26]

    Zhong S Y, Wu X 2011 Acta Phys. Sin. 60 090402 (in Chinese) [钟双英, 伍歆 2011 物理学报 60 090402]

    [27]

    Chen J H, Wang Y J 2003 Chin. Phys. 12 836

    [28]

    Chen J H, Wang Y J 2004 Chin. Phys. 13 583

    [29]

    Chen J H, Wang Y J 2005 Chin. Phys. 14 1282

    [30]

    Chen J H, Wang Y J 2006 Chin. Phys. 15 1705

    [31]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [32]

    Galaviz P, Brugmann 2011 Phys. Rev. D 83 084013

    [33]

    Wang Y, Wu X 2011 Class. Quantum Grav. 28 025010

    [34]

    Wu X, Zhong S Y 2011Gen. Relat. Gravit. 43 2185

    [35]

    Wu X, Huang T Y 2003 Phys. Lett. A 313 77

    [36]

    Froeschle C, Lega E, Gonczi R 1997 Celest. Mech. Dyn. Astron. 67 41

    [37]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

    [38]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李荣, 伍歆 2010 物理学报 59 7135]

    [39]

    Li R, Wu X 2011 Eur. Phys. J. Plus 126 73

    [40]

    Di G H, Xu Y, Xu W, Gu R C 2011 Acta Phys. Sin. 60 020504 (in Chinese) [狄根虎, 许勇, 徐伟, 顾仁财 2011 物理学报 60 020504]

    [41]

    Sun K H, Liu X, Zhu C X 2010 Chin. Phys. B 19 110510

    [42]

    Baker J G, van Meter J R, McWilliams S T, Centrella J, Kelly B J 2007 Phys. Rev. Lett. 99 181101

  • [1] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [2] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 物理学报, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [3] 汪祥莉, 王斌, 王文波, 喻敏. 混沌背景下非平稳谐波信号的自适应同步挤压小波变换提取. 物理学报, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [4] 钟双英, 刘崧, 胡淑娟. 致密双星后牛顿偏心轨道的引力波研究. 物理学报, 2013, 62(23): 230401. doi: 10.7498/aps.62.230401
    [5] 钟双英, 刘崧. 旋转致密双星后牛顿轨道的引力波研究. 物理学报, 2012, 61(12): 120401. doi: 10.7498/aps.61.120401
    [6] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [7] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学. 物理学报, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [8] 陈帝伊, 申滔, 马孝义. 参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制. 物理学报, 2011, 60(5): 050505. doi: 10.7498/aps.60.050505
    [9] 钟双英, 伍歆. 半隐Euler法和隐中点法嵌入混合辛积分器的比较. 物理学报, 2011, 60(9): 090402. doi: 10.7498/aps.60.090402
    [10] 王国光, 王丹, 何丽桥. 混沌中信号的投影滤波. 物理学报, 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [11] 宫衍香, 李峰. 哈勃参数对Robertson-McVittie时空中光线轨道的影响和雷达回波延迟修正. 物理学报, 2010, 59(8): 5261-5265. doi: 10.7498/aps.59.5261
    [12] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [13] 和红杰, 张家树. 基于混沌的自嵌入安全水印算法. 物理学报, 2007, 56(6): 3092-3100. doi: 10.7498/aps.56.3092
    [14] 岳立娟, 沈 柯, 徐明奇. 非线性反馈法控制相位共轭波的光学时空混沌. 物理学报, 2007, 56(8): 4378-4382. doi: 10.7498/aps.56.4378
    [15] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步. 物理学报, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [16] 郜传厚, 周志敏, 邵之江. 高炉冶炼过程的混沌性解析. 物理学报, 2005, 54(4): 1490-1494. doi: 10.7498/aps.54.1490
    [17] 陶朝海, 陆君安. 混沌系统的速度反馈同步. 物理学报, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [18] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数. 物理学报, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
    [19] 伍维根, 古天祥. 混沌系统的非线性反馈跟踪控制. 物理学报, 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
    [20] 李国辉, 周世平, 徐得名, 赖建文. 间隙线性反馈控制混沌. 物理学报, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
计量
  • 文章访问数:  8412
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-12
  • 修回日期:  2012-02-02
  • 刊出日期:  2012-08-05

/

返回文章
返回