-
本文主要研究非保守的后牛顿哈密顿自旋致密双星偏心轨道的引力辐射,数值比较保守的和非保守的自旋致密双星系统轨道参量偏心率大小与 引力波形的关系及引力辐射耗散效应项对轨道动力特性的影响. 数值研究表明:由于系统能量积分被保持,保守的双星轨道偏心率值改变对时域引力波形变化影响不是很明显,但辐射的引力波频率分布范围随着偏心率的增大而扩大. 而当运动方程中包含2.5PN引力耗散效应项时,由于引力辐射时伴随着能量和角动量损失,导致双星两体之间的距离和轨道偏心率逐渐衰减,轨道动力特性变得更加复杂. 双星旋进合并过程中辐射的引力波受到轨道偏心率的调制,引力辐射的强度随着偏心率的增大而增强,而引力辐射持续的时间缩短,且自旋与自旋耦合效应项对引力的贡献增大了.This paper mainly deals with the effects of eccentricity on the gravitational waveforms emitted by the non-conservative post-Newtonian (PN) Hamiltonian formulations of the spinning compact binaries. The numerical results show that the change of eccentricity has a slight influence on the time-domain gravitational waveforms from the conservative spinning compact binaries, but the frequency bands of gravitational waveforms is broadened with increasing eccentricity. Owing to the effects of dissipation from the gravitational radiation reaction, the separation and the eccentricity decrease gradually with time, and the gravitational waveforms emitted from the non-conservative PN spinning compact binaries are modulated by the eccentricity, meanwhile the amplitude of the waveforms enhances with the increase of eccentricity; the duration of the waveforms decreases.
-
Keywords:
- non-conservative /
- gravitational radiation reaction /
- dissipation /
- eccentricity
[1] Kidder L E 1995 Phys. Rev. D 52 821
[2] Will C M, Wiseman A G 1996 Phys. Rev. D 54 4813
[3] Blanchet L, Faye G, Iyer B R, Sinha S 2008 Class. Quant. Grav. 25 165003
[4] Peters P C 1964 Phys. Rev. B 136 1224
[5] Peters P C, Mathews J, 1963 Phys. Rev. 131 435
[6] Gopakumar A, Iyer B R 1997 Phys. Rev. D 56 7708
[7] Gopakumar A, Iyer B R 2002 Phys. Rev. D 65 084011
[8] Brown D A, Zimmerman P J 2010 arXiv:0909.0066v2[gr-qc] 15Feb
[9] Hinder I, Herrmann F, Laguna P, Shoemaker D 2008 arXiv:0806.1037v1[gr-qc]
[10] Will C M 2005 Phys. Rev. D 71 08402
[11] Wang H, Will C M 2007 Phys. Rev. D 75 064017
[12] Konigsdorffer C, Faye G, Schafer G 2003 Phys. Rev. D 68 044004
[13] Levin J, McWillianms S C, Contreras H 2011 arXiv:1009.2533v3[gr-qc] 28 Jul 2011
[14] Thorne K S 1969 Astrophys. J. 158 997
[15] Mora T, Will C M 2004 Physical Rev. D 69 104021
[16] Zhong S Y, Liu S 2012 Acta. Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 物理学报 61 120401]
[17] Wang Y Z, Wu X, Zhong S Y 2012 Acta. Phys. Sin. 61 160401 (in Chinese) [王玉诏, 伍歆, 钟双英 2012 物理学报 61 160401]
[18] Damour T 2001Phys. Rev. D 64 124013
[19] Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037
[20] Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040
-
[1] Kidder L E 1995 Phys. Rev. D 52 821
[2] Will C M, Wiseman A G 1996 Phys. Rev. D 54 4813
[3] Blanchet L, Faye G, Iyer B R, Sinha S 2008 Class. Quant. Grav. 25 165003
[4] Peters P C 1964 Phys. Rev. B 136 1224
[5] Peters P C, Mathews J, 1963 Phys. Rev. 131 435
[6] Gopakumar A, Iyer B R 1997 Phys. Rev. D 56 7708
[7] Gopakumar A, Iyer B R 2002 Phys. Rev. D 65 084011
[8] Brown D A, Zimmerman P J 2010 arXiv:0909.0066v2[gr-qc] 15Feb
[9] Hinder I, Herrmann F, Laguna P, Shoemaker D 2008 arXiv:0806.1037v1[gr-qc]
[10] Will C M 2005 Phys. Rev. D 71 08402
[11] Wang H, Will C M 2007 Phys. Rev. D 75 064017
[12] Konigsdorffer C, Faye G, Schafer G 2003 Phys. Rev. D 68 044004
[13] Levin J, McWillianms S C, Contreras H 2011 arXiv:1009.2533v3[gr-qc] 28 Jul 2011
[14] Thorne K S 1969 Astrophys. J. 158 997
[15] Mora T, Will C M 2004 Physical Rev. D 69 104021
[16] Zhong S Y, Liu S 2012 Acta. Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 物理学报 61 120401]
[17] Wang Y Z, Wu X, Zhong S Y 2012 Acta. Phys. Sin. 61 160401 (in Chinese) [王玉诏, 伍歆, 钟双英 2012 物理学报 61 160401]
[18] Damour T 2001Phys. Rev. D 64 124013
[19] Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037
[20] Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040
计量
- 文章访问数: 6827
- PDF下载量: 575
- 被引次数: 0