搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非马尔科夫耗散系统长时演化下的极限环振荡现象

游波 岑理相

引用本文:
Citation:

非马尔科夫耗散系统长时演化下的极限环振荡现象

游波, 岑理相

Phenomena of limit cycle oscillations for non-Markovian dissipative systems undergoing long-time evolution

You Bo, Cen Li-Xiang
PDF
导出引用
  • 本文研究结构化环境中非马尔科夫耗散系统在长时演化下可能出现的极限环振荡现象. 对于欧姆型谱密度环境中的二能级系统, 由于体系只允许一个束缚态模, 给定初态系统在Bloch空间的长时演化将收敛于一个极限环. 研究揭示了极限环半径与环心位置同环境谱密度函数间的关系. 对于多带光子晶体环境中的二能级系统, 由于其可以存在多个束缚态, 研究展现了系统在长时演化下可能出现的收敛于环面或周期或准周期的振荡行为. 有关环面的特征量与环境谱密度间的量化关系同样得以刻画. 论文随后讨论了两比特系统关联量在局域非马尔科夫耗散环境中长时演化可能出现的特征行为.
    Understanding the non-Markovian dynamics of dissipative processes induced by memory effects of the environment is a fundamental subject of open quantum systems. Because of the complexity of open quantum systems, e.g., the multiple energy scales involving that of the system, the environment, and their mutual coupling, it is generally a challenging task to characterize the relationship among the parameters of the system dynamics and the reservoir spectra. For the two-level spontaneous emission model within structured environments, it was shown in a recent literature (Opt. Lett. 38, 3650) that a functional relation could be established between the asymptotically non-decaying population and the spectral density of the reservoir as the system undergoes a long-time evolution. It hence renders a distinct perspective to look into the character of long-lived quantum coherence in the corresponding non-Markovian process. This article is devoted to further investigate the phenomena of limit cycle oscillations possibly occurring in such non-Markovian dissipative systems in a long-time evolution. For a two-level system subjected to an environment with Ohmic class spectra, due to the presence of a unique bound-state mode of the system, the evolution trajectory of the given initial states will converge to a limit cycle in the Bloch space. The dependence of the radius and the location of the limit cycle on the spectral density function of the reservoir are manifested by virtue of the described functional relation. For the model subjected to a photonic crystal environment with multiple bands, our studies reveal that, owing to the presence of two or more bound states, the evolution trajectory of the system will converge to a toric curve of a paraboloid in the Bloch space and the phenomena of periodic or quasi-periodic oscillations could exhibit. While the equation of the parabolic curve is fully determined by the initial values of the state vector in the Bloch space, our results reveal that the scope of the evolution trajectory inside the toric curve is related to the spectral density of the reservoir and their quantified relation is distinctly characterized. Finally, the asymptotic dynamics of the correlations of a two-qubit system is discussed when it is subjected locally to the non-Markovian dissipative process.
      通信作者: 岑理相, lixiangcen@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 10874254)资助的课题.
      Corresponding author: Cen Li-Xiang, lixiangcen@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10874254).
    [1]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (London: Oxford University Press) pp460-498

    [2]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [3]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [4]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [5]

    Kofman A G, Kurizki G, Sherman B 1994 J. Mod. Opt. 41 353

    [6]

    Kofman A G, Kurizki G 1996 Phys. Rev. A 54 R3750

    [7]

    Chen S, Xie S Y, Yang Y P, Chen H 2003 Acta Phys. Sin. 52 853 (in Chinese) [陈三, 谢双媛, 羊亚平, 陈鸿 2003 物理学报 52 853]

    [8]

    Lodahl P, Driel A F van, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654

    [9]

    Xu X, Yamada T, Ueda R, Otomo A 2008 Opt. Lett. 33 1768

    [10]

    Hoeppe U, Wolff C, Kchenmeister J, Niegemann J, Drescher M, Benner H, Busch K 2012 Phys. Rev. Lett. 108 043603

    [11]

    Bellomo B, Franco R Lo, Maniscalco S, Compagno G 2008 Phys. Rev. A 78 060302

    [12]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [13]

    Rivas á, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403

    [14]

    Tong Q J, An J H, Luo H G, Oh C H 2010 Phys. Rev. A 81 052330

    [15]

    Zhang P, You B, Cen L X 2013 Opt. Lett. 38 3650

    [16]

    Zhang P, You B, Cen L X 2014 Chin. Sci. Bull. 59 3841

    [17]

    Perko L 2001 Differential Equations and Dynamical Systems (New York: Springer-Verlag) pp315-540

  • [1]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (London: Oxford University Press) pp460-498

    [2]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [3]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [4]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [5]

    Kofman A G, Kurizki G, Sherman B 1994 J. Mod. Opt. 41 353

    [6]

    Kofman A G, Kurizki G 1996 Phys. Rev. A 54 R3750

    [7]

    Chen S, Xie S Y, Yang Y P, Chen H 2003 Acta Phys. Sin. 52 853 (in Chinese) [陈三, 谢双媛, 羊亚平, 陈鸿 2003 物理学报 52 853]

    [8]

    Lodahl P, Driel A F van, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654

    [9]

    Xu X, Yamada T, Ueda R, Otomo A 2008 Opt. Lett. 33 1768

    [10]

    Hoeppe U, Wolff C, Kchenmeister J, Niegemann J, Drescher M, Benner H, Busch K 2012 Phys. Rev. Lett. 108 043603

    [11]

    Bellomo B, Franco R Lo, Maniscalco S, Compagno G 2008 Phys. Rev. A 78 060302

    [12]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [13]

    Rivas á, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403

    [14]

    Tong Q J, An J H, Luo H G, Oh C H 2010 Phys. Rev. A 81 052330

    [15]

    Zhang P, You B, Cen L X 2013 Opt. Lett. 38 3650

    [16]

    Zhang P, You B, Cen L X 2014 Chin. Sci. Bull. 59 3841

    [17]

    Perko L 2001 Differential Equations and Dynamical Systems (New York: Springer-Verlag) pp315-540

  • [1] 宋张代, 张林. 二次耦合光力学系统的一类高维可控自持振荡行为. 物理学报, 2013, 62(20): 204204. doi: 10.7498/aps.62.204204
    [2] 陆法林, 陈昌远, 尤源. 双环形Hulthn势束缚态的近似解析解. 物理学报, 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [3] 崔岩, 刘素华, 葛晓陵. Langford系统Hopf分岔极限环幅值控制. 物理学报, 2012, 61(10): 100202. doi: 10.7498/aps.61.100202
    [4] 时培明, 李纪召, 刘彬, 韩东颖. 一类准周期参激非线性相对转动动力系统的稳定性与时滞反馈控制. 物理学报, 2011, 60(9): 094501. doi: 10.7498/aps.60.094501
    [5] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析. 物理学报, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [6] 刘爽, 刘浩然, 闻岩, 刘彬. 一类耦合非线性相对转动系统的Hopf分岔控制. 物理学报, 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223
    [7] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制. 物理学报, 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [8] 唐驾时, 萧 寒. 耦合的van der Pol振子的极限环幅值控制. 物理学报, 2007, 56(1): 101-105. doi: 10.7498/aps.56.101
    [9] 刘素华, 唐驾时. Langford系统Hopf分叉的线性反馈控制. 物理学报, 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
    [10] 张民仓, 王振邦. 一类环状非球谐振子势场中相对论粒子的束缚态解. 物理学报, 2007, 56(7): 3688-3692. doi: 10.7498/aps.56.3688
    [11] 张民仓, 王振邦. Makarov势的Dirac方程的束缚态解. 物理学报, 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [12] 陈子栋, 陈 刚. Hartmann势的Klein-Gordon方程束缚态解及递推关系. 物理学报, 2005, 54(6): 2524-2527. doi: 10.7498/aps.54.2524
    [13] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解. 物理学报, 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
    [14] 李 宁, 鞠国兴, 任中洲. 一类相对论性非球谐振子系统的束缚态. 物理学报, 2005, 54(6): 2520-2523. doi: 10.7498/aps.54.2520
    [15] 陆法林, 陈昌远. 环形非球谐振子势Klein-Gordon方程的束缚态. 物理学报, 2004, 53(6): 1652-1656. doi: 10.7498/aps.53.1652
    [16] 陈 刚, 楼智美. 无反射势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [17] 陈 刚, 楼智美. 四参数双原子分子势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [18] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌. 物理学报, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
    [19] 郭建友. tan~2(πηr)型势阱中相对论粒子的束缚态. 物理学报, 2002, 51(7): 1453-1457. doi: 10.7498/aps.51.1453
    [20] 封国林, 董文杰, 贾晓静, 曹鸿兴. 海-气振荡子中的极限环解. 物理学报, 2002, 51(6): 1181-1185. doi: 10.7498/aps.51.1181
计量
  • 文章访问数:  5471
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-11-05

/

返回文章
返回