-
研究了微动目标的多普勒回波模拟及特征参数提取技术. 提出了一种基于物理光学法和等效电磁流法的扩展性微动目标回波模拟方法. 将在目标坐标系下计算得到的后向散射场通过坐标转换, 成为雷达坐标系下的目标回波, 通过与解析信号模型对比验证方法的正确性. 分析了圆锥与带翼弹头的进动特性, 为获得较好的时频聚集性同时避免交叉项采用S-method方法对获取的回波信号进行时频分析, 分析了不同雷达波入射角度, 不同运动状态及不同几何外形的时频分布特点. 对时频分布图进行逆Radon变换, 将正弦曲线映射到参数空间, 从而获取目标的微动参数. 该研究结合电磁散射与信号处理技术, 通过对典型弹道目标的仿真, 获得一些不同于传统微动模型的结果, 结合电磁散射理论, 对这些现象进行了解释分析. 该研究成果在弹道目标的探测识别领域具有重要的理论与应用价值.The micro-motion Doppler echo simulation and characteristic parameter extraction of the extended micro-motion target are carried out. For the extended micro-motion target, the echo from the target cannot be regarded as several points' echo. Based on the connections between the scattering field and Doppler echo, an echo simulation method for micro-motion target (based on physical optics) and a method of equivalent current are proposed. At the moment, the micro-motion target can be taken as a static target, so the back scattering field series can be calculated by physical optics and the method of equivalent current. The back scattering field series calculated in the target coordinate system is transformed into the echo of radar coordinate system by the conversion of coordinates, and the Doppler echo is obtained. By comparing with the analytic signal model, the method is validated. The precession characteristics of a cone and warhead with fins are analyzed. Echoes come from every part of the extended micro-motion target and contain the motion characteristics of that part. So the traditional time-frequency analytical methods are not appropriate. In order to achieve better time frequency concentration and avoid the cross terms, the S-method is used to get the time-frequency distributions. The time-frequency characteristics at different radar waves' incidence angles, target different motion states and different geometries are analyzed. From the time-frequency distribution map, the micro-motion of the cone behaves as the micro-motion of two strong scattering points at the bottom of the cone. Because of the shielding effect, the time-frequency curves are not integrated when the radar waves are incident from the cone's bottom. The sinusoidal curve can be mapped to a point in the parameter space based on the inverse radon transform, and the target micro-motion parameters can be obtained. Results of inverse radon transform also show that the precession of the cone behaves as the precession of the two strong scattering points, and the two points' phase difference is equal. For warhead with fins, the time frequency distribution of spin behaves as four sinusoidal curves whose phase differences are equal, implying that the micro-motion of the target behaves like the four fins' micro-motion. However, the sinusoidal curves of precession of the warhead with fins are very different, i.e. their phase differences are not equal. This is because the precession consists of spinning and coning, and the coning has a modulation effect on the spinning. These phase information and the number of strong scattering points can be directly and easily obtained through inverse radon transform. This study combines the electromagnetic scattering with the signal procession. And some results are different from that of traditional micro-motion models through the simulation of typical ballistic targets. Results are explained and analyzed by combining scattering theory. This research has important theoretical and application values in the ballistic target detection and recognition.
-
Keywords:
- physical optics /
- method of equivalent current /
- S-method /
- inverse radon transform
[1] Chen V C, Li F Y, Ho S S, Wechsler H 2006 IEEE Trans. Aero. Elec. Sys. 42 2
[2] Chen V C 2008 IET Sig. Proc. 2 291
[3] Li J, Pi Y M, Yang X B 2010 J. Infra. Milli. Terahz. Waves 31 319
[4] Li P, Wang D C, Chen J L 2013 Sig. Image Video Proc. 7 1239
[5] Chen V C 2008 IET Sig. Proc. 2 291
[6] Zhang Y M, Wang Y H, Guo L X 2010 Chin. Phys. B 19 054103
[7] Xiang D P, Zhou D M, He J G 2010 Chinese Jour. Radio Sci. 25 1193 (in Chinese) [向道朴, 周东明, 何建国 2010 电波科学学报 25 1193]
[8] Guo K Yi, Sheng X Q, Shen R H, Jing C J 2012 IET Radar Sonar Naviga. 7 579
[9] Liu L H, McLernon D, Ghogho M, Hu W D, Huang J 2012 Digit. Sig. Proc. 22 87
[10] Durak L, Arikan O 2003 IEEE Trans. Sig. Proc. 51 1231
[11] Richard C 2002 IEEE Trans. Sig. Proc. 50 2170
[12] Tan J L, Sha'ameri A Z b 2011 Sig. Proc. 91 931
[13] Khan N A, Taj I A, Jaffri M N, Ijaz S 2011 Sig. Proc. 91 590
[14] Stankovic. L 1994 IEEE Trans. Sig. Proc. 42 225
[15] Stankovica L, Dakovica M, Thayaparan T 2013 Sig. Proc. 93 1392
[16] Stankovic S, Stankovic L 1997 IEEE Trans. Circ. Sys. 44 600
[17] Djurovic I, Stankovick L 1999 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services Nis, Yugoslavia, October 13-15, 1999 p464
[18] Dakovic M, Stankovic L 2013 8th international symposium on image and signal processing and analysis Trieste, Italy, September 4-6, 2013 p302
[19] Fu X J, Yan H, Wang C, Lei X H, Gao M G 2013 IEEE Trans. Aero. Elec. Sys. 49 2073
[20] Gordon W B 1994 IEEE Trans. Anten. Propag. 42 427
[21] Zhu Y J, Jiang Y S, Zhang C H, Xin C W 2014 Acta Phys. Sin. 63 164202 (in Chinese) [朱艳菊, 江月松, 张崇辉, 辛灿伟 2014 物理学报 63 164202]
[22] Ji W J, Tong C M 2012 Acta Phys. Sin. 61 160301 (in Chinese) [姬伟杰, 童创明 2012 物理学报 61 160301]
[23] Michaeli A 1984 IEEE Trans. Anten. Propag. 32 252
[24] Baussard A, Rochdi M, Khenchaf A 2011 Prog. Electromagn. Res. 111 229
[25] Li X F, Xie Y J, Fan J, Wang Y Y 2009 Acta Phys. Sin. 58 908 (in Chinese) [李晓峰, 谢拥军, 樊君, 王元源 2009 物理学报 58 908]
[26] Guo L X, W R, Wu Z S 2010 Chin. Phys. B 19 044102
-
[1] Chen V C, Li F Y, Ho S S, Wechsler H 2006 IEEE Trans. Aero. Elec. Sys. 42 2
[2] Chen V C 2008 IET Sig. Proc. 2 291
[3] Li J, Pi Y M, Yang X B 2010 J. Infra. Milli. Terahz. Waves 31 319
[4] Li P, Wang D C, Chen J L 2013 Sig. Image Video Proc. 7 1239
[5] Chen V C 2008 IET Sig. Proc. 2 291
[6] Zhang Y M, Wang Y H, Guo L X 2010 Chin. Phys. B 19 054103
[7] Xiang D P, Zhou D M, He J G 2010 Chinese Jour. Radio Sci. 25 1193 (in Chinese) [向道朴, 周东明, 何建国 2010 电波科学学报 25 1193]
[8] Guo K Yi, Sheng X Q, Shen R H, Jing C J 2012 IET Radar Sonar Naviga. 7 579
[9] Liu L H, McLernon D, Ghogho M, Hu W D, Huang J 2012 Digit. Sig. Proc. 22 87
[10] Durak L, Arikan O 2003 IEEE Trans. Sig. Proc. 51 1231
[11] Richard C 2002 IEEE Trans. Sig. Proc. 50 2170
[12] Tan J L, Sha'ameri A Z b 2011 Sig. Proc. 91 931
[13] Khan N A, Taj I A, Jaffri M N, Ijaz S 2011 Sig. Proc. 91 590
[14] Stankovic. L 1994 IEEE Trans. Sig. Proc. 42 225
[15] Stankovica L, Dakovica M, Thayaparan T 2013 Sig. Proc. 93 1392
[16] Stankovic S, Stankovic L 1997 IEEE Trans. Circ. Sys. 44 600
[17] Djurovic I, Stankovick L 1999 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services Nis, Yugoslavia, October 13-15, 1999 p464
[18] Dakovic M, Stankovic L 2013 8th international symposium on image and signal processing and analysis Trieste, Italy, September 4-6, 2013 p302
[19] Fu X J, Yan H, Wang C, Lei X H, Gao M G 2013 IEEE Trans. Aero. Elec. Sys. 49 2073
[20] Gordon W B 1994 IEEE Trans. Anten. Propag. 42 427
[21] Zhu Y J, Jiang Y S, Zhang C H, Xin C W 2014 Acta Phys. Sin. 63 164202 (in Chinese) [朱艳菊, 江月松, 张崇辉, 辛灿伟 2014 物理学报 63 164202]
[22] Ji W J, Tong C M 2012 Acta Phys. Sin. 61 160301 (in Chinese) [姬伟杰, 童创明 2012 物理学报 61 160301]
[23] Michaeli A 1984 IEEE Trans. Anten. Propag. 32 252
[24] Baussard A, Rochdi M, Khenchaf A 2011 Prog. Electromagn. Res. 111 229
[25] Li X F, Xie Y J, Fan J, Wang Y Y 2009 Acta Phys. Sin. 58 908 (in Chinese) [李晓峰, 谢拥军, 樊君, 王元源 2009 物理学报 58 908]
[26] Guo L X, W R, Wu Z S 2010 Chin. Phys. B 19 044102
计量
- 文章访问数: 5866
- PDF下载量: 178
- 被引次数: 0