搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析

朱艳菊 江月松 华厚强 张崇辉 辛灿伟

引用本文:
Citation:

热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析

朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟

Modified equivalent current approximation and graphical electromagnetic computing method of analyzing radar cross section of missile target scatterer covered with thermal protection layer

Zhu Yan-Ju, Jiang Yue-Song, Hua Hou-Qiang, Zhang Chong-Hui, Xin Can-Wei
PDF
导出引用
  • 将修正的等效电流近似法与图形计算电磁学法相结合引入到热防护层覆盖弹体目标的电磁散射问题的研究中. 应用修正的等效电流近似法对介质和有耗表面进行散射计算, 结合图形计算电磁学法, 借助于计算机显示技术, 将三维目标图形在计算机屏幕上投影, 由图形加速卡完成遮挡和消隐工作, 利用图形计算电磁学的积分公式, 把三维空间的计算转化为二维空间的计算, 大大降低了计算时间和复杂度. 计算结果表明: 当入射波频率较低时, 热防护层的厚度不会影响弹体雷达截面值的大小, 当频率升高,随着热防护层厚度的增加, 弹体雷达截面值不断减小, 说明热防护涂层为有耗介质, 介电常数的虚部越大其消耗能量的能力越强, 弹体雷达截面变化越明显; 当热防护层中存在孔隙, 热防护层厚度一定, 孔隙率越大, 雷达截面值越大, 孔隙率为零时, 雷达截面值最小. 当孔隙率相同, 热防护层越薄, 其雷达截面值越大; 当弹体在高空中出现脱粘现象,对弹体的雷达截面值影响不大.
    In this paper, we combine the modified equivalent current approximate method and graphical electromagnetic computing method to solve the electromagnetic scattering problems in the missile target covered with the thermal protective layer. The modified equivalent current approximate method is used to calculate the lossy dielectric and combining graphical electromagnetic method, and using a computer display technology, blanking and occlusion, a three-dimensional surface is projected on a computer screen, and the pixels are calculated. The calculation in three-dimensional space is converted into the calculation in two-dimensional space, thereby greatly reducing the computation time and complexity. The results show that when the incident frequency is low, the thickness of the thermal protection layer does not affect the radar cross section value. When the frequency is increased with the thickness of the thermal protection layer, the radar cross section value continuously decreases, which indicates that the thermal barrier coating is a lossy medium: the bigger the imaginary part of the dielectric, the stronger the ability to consume the energy is and the more obvious the change of missile radar cross section is. When the thermal protective layer has pores, the higher the porosity, the greater the value of the radar cross section is; when the porosity is zero, the value of the radar cross section is minimal; when the porosity is the same, the thinner the thermal protection layer, the bigger the radar cross section is. When the projectile phenomenon occurs, it does not affect the radar cross section.
    [1]

    Sun J, Liu W Q 2014 Acta Phys. Sin. 63 094401 (in Chinese) [孙健, 刘伟强 2014 物理学报 63 094401]

    [2]

    Wei Z W, Xiao J, Liu J J, Fan L E 2006 Aero Wea. 2 50 (in Chinese) [魏仲委, 肖军, 刘建杰, 樊来恩 2006 航空兵器 2 50]

    [3]

    Sayar M, Seo D, Ogawa K 2009 NDT & E. Inter. 42 398

    [4]

    Shi Y L, Zhou Q L, Zhang C L 2009 Chin. Phys. B 18 5511

    [5]

    Wang Z L, Zhou M, Gao C Y, Zhang W 2012 Chin. Phys. B 21 064202

    [6]

    Li X F, Xie Y J, Wang P, Yang R 2008 Acta Phys. Sin. 57 2930 (in Chinese) [李晓峰, 谢拥军, 王鹏, 杨瑞 2008 物理学报 57 2930]

    [7]

    Wu Z S, Zhang X D, Wu C K 1997 Chin. Phys. Lett. 14 32

    [8]

    Li X F, Xie Y J, Fan J 2009 Acta Phys. Sin. 58 908 (in Chinese) [李晓峰, 谢拥军, 樊君 2009 物理学报 58 908]

    [9]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [10]

    Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431

    [11]

    Meana, J G, Martinez-Lorenzo J A, Las-Heras F, Rappaport C 2010 IEEE Trans. Anten. Propag. 58 3757

    [12]

    Rius J M, Ferrando M, Jofre L 1993 IEEE Trans. Anten. Propag. Mag. 35 7

    [13]

    Li P, Luo F, Wang X Y, Zhou W C, Zhu D M 2007 Rare Metal. Mater. Engin. 36 623 (in Chinese) [李鹏, 罗发, 王晓艳, 周万城, 朱东梅 2007 稀有金属材料与工程 36 623]

    [14]

    Yang Y E 2013 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [杨玉娥 2013 博士学位论文 (北京: 北京工业大学)]

    [15]

    Meana J G, Martinez-Lorenzo J A, Las-Heras F 2010 Elec. Waves. Propag. Comp. Matt. 21 208

    [16]

    Chen K S 2007 Electromagnetic Fields and Waves (Beijing: High Education Press) pp239-247 (in Chinese) [陈抗生 2007 电磁场与电磁波 (北京: 高等教育出版社) 第239–247页]

    [17]

    Wang W X, Zhu K L 2001 Missile Encyclopedic Dictionary (Beijing: China Astronautic Publishing Press) pp52-60 (in Chinese) [汪维勋, 朱坤岭 2001 导弹百科词典 (北京: 中国宇航出版社) 第52–60页]

  • [1]

    Sun J, Liu W Q 2014 Acta Phys. Sin. 63 094401 (in Chinese) [孙健, 刘伟强 2014 物理学报 63 094401]

    [2]

    Wei Z W, Xiao J, Liu J J, Fan L E 2006 Aero Wea. 2 50 (in Chinese) [魏仲委, 肖军, 刘建杰, 樊来恩 2006 航空兵器 2 50]

    [3]

    Sayar M, Seo D, Ogawa K 2009 NDT & E. Inter. 42 398

    [4]

    Shi Y L, Zhou Q L, Zhang C L 2009 Chin. Phys. B 18 5511

    [5]

    Wang Z L, Zhou M, Gao C Y, Zhang W 2012 Chin. Phys. B 21 064202

    [6]

    Li X F, Xie Y J, Wang P, Yang R 2008 Acta Phys. Sin. 57 2930 (in Chinese) [李晓峰, 谢拥军, 王鹏, 杨瑞 2008 物理学报 57 2930]

    [7]

    Wu Z S, Zhang X D, Wu C K 1997 Chin. Phys. Lett. 14 32

    [8]

    Li X F, Xie Y J, Fan J 2009 Acta Phys. Sin. 58 908 (in Chinese) [李晓峰, 谢拥军, 樊君 2009 物理学报 58 908]

    [9]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [10]

    Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431

    [11]

    Meana, J G, Martinez-Lorenzo J A, Las-Heras F, Rappaport C 2010 IEEE Trans. Anten. Propag. 58 3757

    [12]

    Rius J M, Ferrando M, Jofre L 1993 IEEE Trans. Anten. Propag. Mag. 35 7

    [13]

    Li P, Luo F, Wang X Y, Zhou W C, Zhu D M 2007 Rare Metal. Mater. Engin. 36 623 (in Chinese) [李鹏, 罗发, 王晓艳, 周万城, 朱东梅 2007 稀有金属材料与工程 36 623]

    [14]

    Yang Y E 2013 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [杨玉娥 2013 博士学位论文 (北京: 北京工业大学)]

    [15]

    Meana J G, Martinez-Lorenzo J A, Las-Heras F 2010 Elec. Waves. Propag. Comp. Matt. 21 208

    [16]

    Chen K S 2007 Electromagnetic Fields and Waves (Beijing: High Education Press) pp239-247 (in Chinese) [陈抗生 2007 电磁场与电磁波 (北京: 高等教育出版社) 第239–247页]

    [17]

    Wang W X, Zhu K L 2001 Missile Encyclopedic Dictionary (Beijing: China Astronautic Publishing Press) pp52-60 (in Chinese) [汪维勋, 朱坤岭 2001 导弹百科词典 (北京: 中国宇航出版社) 第52–60页]

计量
  • 文章访问数:  1850
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-05
  • 修回日期:  2014-06-30
  • 刊出日期:  2014-12-05

热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析

  • 1. 北京航空航天大学电子信息工程学院, 北京 100191

摘要: 将修正的等效电流近似法与图形计算电磁学法相结合引入到热防护层覆盖弹体目标的电磁散射问题的研究中. 应用修正的等效电流近似法对介质和有耗表面进行散射计算, 结合图形计算电磁学法, 借助于计算机显示技术, 将三维目标图形在计算机屏幕上投影, 由图形加速卡完成遮挡和消隐工作, 利用图形计算电磁学的积分公式, 把三维空间的计算转化为二维空间的计算, 大大降低了计算时间和复杂度. 计算结果表明: 当入射波频率较低时, 热防护层的厚度不会影响弹体雷达截面值的大小, 当频率升高,随着热防护层厚度的增加, 弹体雷达截面值不断减小, 说明热防护涂层为有耗介质, 介电常数的虚部越大其消耗能量的能力越强, 弹体雷达截面变化越明显; 当热防护层中存在孔隙, 热防护层厚度一定, 孔隙率越大, 雷达截面值越大, 孔隙率为零时, 雷达截面值最小. 当孔隙率相同, 热防护层越薄, 其雷达截面值越大; 当弹体在高空中出现脱粘现象,对弹体的雷达截面值影响不大.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回