搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合时钟驱动的自旋神经元器件激活特性和计算性能

袁佳卉 杨晓阔 张斌 陈亚博 钟军 危波 宋明旭 崔焕卿

引用本文:
Citation:

混合时钟驱动的自旋神经元器件激活特性和计算性能

袁佳卉, 杨晓阔, 张斌, 陈亚博, 钟军, 危波, 宋明旭, 崔焕卿

Activation function and computing performance of spin neuron driven by magnetic field and strain

Yuan Jia-Hui, Yang Xiao-Kuo, Zhang Bin, Chen Ya-Bo, Zhong Jun, Wei Bo, Song Ming-Xu, Cui Huan-Qing
PDF
HTML
导出引用
  • 自旋神经元是一种新兴的人工神经形态器件, 其具有超低功耗、强非线性、高集成度和存算一体等优点, 是构建新一代神经网络的强有力候选者. 本文提出了一种磁场辅助磁弹应变驱动的混合时钟自旋神经元, 利用OOMMF微磁学仿真软件建立了该神经元器件的微磁学模型, 基于LLG方程建立了其数值仿真模型, 利用所设计的自旋神经元构建了3层神经网络, 研究了不同纳磁体材料(Terfenol-D, FeGa, Ni)神经元器件的激活特性及其对MNIST手写数字数据集识别性能的影响. OOMMF仿真和数值模拟发现, 设计的混合时钟结构能够成功驱动纳磁体发生随机磁化翻转, 有效模拟生物神经元的激活行为和特性. MNIST手写数字识别结果表明: 当输入不同范围的磁场使得3种材料的自旋神经元都达到饱和识别精度时, 该自旋神经元器件具有与Sigmoid神经元器件相同的识别能力, 有望替代传统的CMOS神经元, 并且选择合适的磁致伸缩层材料能够进一步降低智能计算的整体功耗; 当输入相同范围的磁场时, Ni构成的自旋神经元的识别速度较慢. 研究结果可为新型人工神经网络和智能电路的设计及应用奠定一定的理论基础.
    The spin neuron is an emerging artificial neural device which has many advantages such as ultra-low power consumption, strong nonlinearity, and high integration. Besides, it has ability to remember and calculate at the same time. So it is seen as a suitable and excellent candidate for the new generation of neural network. In this paper, a spin neuron driven by magnetic field and strain is proposed. The micromagnetic model of the device is realized by using the OOMMF micromagnetic simulation software, and the numerical model of the device is also established by using the LLG equation. More importantly, a three-layer neural network is composed of spin neurons constructed respectively using three materials (Terfenol-D, FeGa, Ni). It is used to study the activation functions and the ability to recognize the MNIST handwritten datasets.c Results show that the spin neuron can successfully achieve the random magnetization switching to simulate the activation behavior of the biological neuron. Moreover, the results show that if the ranges of the inputting magnetic fields are different, the three materials' neurons can all reach the saturation accuracy. It is expected to replace the traditional CMOS neuron. And the overall power consumption of intelligent computing can be further reduced by using appropriate materials. If we input the magnetic fields in the same range, the recognition speed of the spin neuron made of Ni is the slowest in the three materials. The results can establish a theoretical foundation for the design and the applications of the new artificial neural networks and the intelligent circuits.
      通信作者: 杨晓阔, yangxk0123@163.com
    • 基金项目: 国家自然科学基金(批准号: 11975311)和陕西省自然科学基础研究计划项目(批准号: 2021JM-221, 2020JQ-470)资助的课题
      Corresponding author: Yang Xiao-Kuo, yangxk0123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975311) and the Natural Science Basic Research Program of Shaanxi, China (Grant Nos. 2021JM-221, 2020JQ-470).
    [1]

    Aleksander I 2004 Nature 432 18

    [2]

    Linares-Barranco B, Sanchez-Sinencio E, Rodriguez-Vazquez A, Huertas J L 1991 IEEE J. Solid-State Circuits 26 956Google Scholar

    [3]

    Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar

    [4]

    陈怡然, 李海, 陈逸中, 陈凡, 李思成, 刘晨晨, 闻武杰, 吴春鹏, 燕博南 2018 人工智能 2 46Google Scholar

    Chen Y R, Li H, Chen Y Z, Chen F, Li S C, Liu C C, Wen W J, Wu C P, Yan B N 2018 AI-View 2 46Google Scholar

    [5]

    Yang R, Terabe K, Yao Y P, Tsuruoka T, Hasegawa T, Gimzewski J K, Aono M 2013 Nanotechnology 24 384003Google Scholar

    [6]

    Chen C, Yang M, Liu S, Liu T, Zhu K, Zhao Y, Wang H, Huang Q, Huang R 2019 Symposium on VLSI Technology (Kyoto: IEEE) p136

    [7]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [8]

    Tuma T, Pantazi A, Gallo M L, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [9]

    Cai J L, Fang B, Zhang L, Lv W X, Zhang B S, Zhou T J, Finocchio G, Zeng Z M 2019 Phys. Rev. Appl. 11 034015Google Scholar

    [10]

    Zhu J D, Zhang T, Yang Y C, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [11]

    Yue K, Liu Y Z, Lake R K, Parker A C 2019 Sci. Adv. 5 eaau8170Google Scholar

    [12]

    Fukami S, Ohno H 2018 J. Appl. Phys. 124 151904Google Scholar

    [13]

    Sengupta A, Choday S H, Y Kim, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [14]

    Fulara H, Zahedinejad M, Khymyn R, Dvornik M, Fukami S, Kanai S, Ohno H, Akerman J 2020 Nat. Commun. 11 4006Google Scholar

    [15]

    Dong I, Yoon G, Sik H, Park, Wanjun 2015 J. Appl. Phys. 117 17D714Google Scholar

    [16]

    Vincent A F, Jerome L, Locatelli N, Nesrine B R, Bichler O, Gamrat C, Zhao W S, Klein J O, Galdin-Retailleau S, Querlioz D 2015 IEEE T. Biomed. Circ. S 9 166Google Scholar

    [17]

    Chen Y B, Song M X, Wei B, Yang X K, Cui H Q, Liu J H, Li C 2020 IEEE Magn. Lett. 11 4504505Google Scholar

    [18]

    Kim Y, Fong X, Roy K 2015 IEEE Magn. Lett. 6 3001004Google Scholar

    [19]

    Fukushima A, Seki T, Yakushiji K, Kubota H, Imamura H, Yuasa S, Ando K 2014 Appl. Phys. Express 7 083001Google Scholar

    [20]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [21]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391Google Scholar

    [22]

    Carlton D B, Emley N C, Tuchfeldand E, Bokor J 2008 Nano Lett. 8 4173Google Scholar

    [23]

    Kurenkov A, DuttaGupta S, Zhang C H, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 1900636Google Scholar

    [24]

    Cai J L, Fang B, Wang C, Zeng Z M 2017 Appl. Phys. Lett. 111 182410Google Scholar

    [25]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv. Electron. Mater. 5 1800782Google Scholar

    [26]

    Zhang S, Su Y, Li X, Li R, Tian W, Hong J, You L 2019 Appl. Phys. Lett. 114 042401Google Scholar

    [27]

    Sheng Y, Edmonds K W, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [28]

    Cao Y, Rushforth A W, Sheng Y, Zheng H Z, Wang K Y 2019 Adv. Funct. Mater. 29 1808104Google Scholar

    [29]

    王宗巍, 杨玉超, 蔡一茂, 朱涛, 丛杨, 王志衡, 黄如 2019 中国科学基金 33 656Google Scholar

    Wang Z W, Yang Y C, Cai Y M, Zhu T, Cong Y, Wang Z H, Huang R 2019 Bulletin of National Natural Science Foundation of China 33 656Google Scholar

    [30]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [31]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062Google Scholar

    [32]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [33]

    Cowburn R P, Welland M E 2000 Science 287 1466Google Scholar

    [34]

    Locatelli N, Cros V, Grollier J 2013 Nat. Mater. 13 11Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Li X, Carka D, Liang C Y, Sepulveda A E, Keller S M, Amiri P K, Carman G P, Lynch C S 2015 J. Appl.Phys. 118 014101Google Scholar

    [37]

    王庆伟, 张晶晶, 马天宇, 严密 2009 稀有金属材料与工程 38 1234Google Scholar

    Wang Q W, Zhang J J, Ma T Y, Yan M 2009 Rare. Metal. Mat. Eng. 38 1234Google Scholar

    [38]

    Bertotti G, Serpico C, Mayergoyz I D 2009 Nonlinear Magnetization Dynamics in Nanosystems (Oxford: Elsevier) pp401−445

    [39]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D. Appl. Phys. 38 3333Google Scholar

    [40]

    Liyanagedera C M, Sengupta A, Jaiswal A, Roy K 2017 Phys. Rev. Appl. 8 064017Google Scholar

    [41]

    Glorot X, Bengio Y 2010 J. Mach. Learn. Res. 9 249

    [42]

    Fashami M S, Atulasimha J, Bandyopadhyay S 2012 Nanotechnology 23 105201Google Scholar

    [43]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [44]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2018 IEEE Electron Device Lett. 40 220Google Scholar

    [45]

    Das J, Alam S M, Bhanja S 2011 IEEE J. Emerg. Sel. Top. Circuits Syst. 1 267Google Scholar

  • 图 1  磁场辅助磁弹时钟神经元

    Fig. 1.  Magnetic field assisted strain-mediated neuron.

    图 2  磁化翻转原理图

    Fig. 2.  Schematic of magnetization switching.

    图 3  动态磁化过程 (a) 磁化初始方向为–y; (b) 施加30 MPa应力, 磁化翻转90°; 撤去应力, 施加10 mT磁场; (c)方向相反, 磁化翻转180°; (d)方向相同, 磁化翻转0°

    Fig. 3.  Magnetization process: (a) Initial direction of magnetization is –y; (b) a 30 MPa strain is applied and then 90° switching is achieved, removing strain and applying a 10 mT magnetic field; (c) 180° magnetization switching; (d) 0° magnetization switching.

    图 4  磁化矢量随时间变化曲线图 (a) 1 ns时, 施加磁场沿y轴正方向时的磁化矢量变化图; (b) 1 ns时, 施加磁场沿y轴负方向的磁化矢量变化图

    Fig. 4.  Magnetization vector with time: (a) When t = 1 ns, a magnetic field is applied in the direction along +y; (b) when t = 1 ns, a magnetic field is applied in the direction along –y.

    图 5  室温下随机磁化翻转的动态磁化过程 (a) 180°磁化翻转; (b) 0°磁化翻转

    Fig. 5.  Magnetization dynamics at room temperature: (a) 180° magnetization switching; (b) 0° magnetization switching.

    图 6  180°磁化翻转概率与输入磁场的关系, 磁致伸缩层材料为(a) Terfenol-D, (b) FeGa, (c) Ni

    Fig. 6.  180° magnetization switching probability versus magnetic field, the magnetostrictive layer material is (a) Terfenol-D, (b) FeGa, (c) Ni.

    图 7  基于磁场辅助磁弹时钟的自旋神经元的三层神经网络结构示意图

    Fig. 7.  Three-layer neural network based on magnetic field + strain spin neurons.

    图 8  不同材料神经元器件的识别精度

    Fig. 8.  Recognition rate obtained from the neural network with different materials.

    图 9  输入磁场为0—15 mT时, 不同材料神经元器件的识别精度

    Fig. 9.  When the magnetic field is 0–15 mT, the recognition rate obtained from the neural network with different materials.

    表 1  材料参数表

    Table 1.  Parameters of different materials.

    参数Terfenol-DFeGaNi
    杨氏模量Y/(1010 Pa)8.02.521.4
    磁致伸缩系数λs/10–46.04.0–0.2
    吉尔伯特阻尼系数α0.1000.1000.045
    回磁比γ/(105 rad·s–1·T–1)2.212.212.21
    饱和磁化率Ms/(105 A·m–1)8.0013.204.84
    交换作用常数A/(10–11 J·m–1)0.901.601.05
    下载: 导出CSV
  • [1]

    Aleksander I 2004 Nature 432 18

    [2]

    Linares-Barranco B, Sanchez-Sinencio E, Rodriguez-Vazquez A, Huertas J L 1991 IEEE J. Solid-State Circuits 26 956Google Scholar

    [3]

    Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar

    [4]

    陈怡然, 李海, 陈逸中, 陈凡, 李思成, 刘晨晨, 闻武杰, 吴春鹏, 燕博南 2018 人工智能 2 46Google Scholar

    Chen Y R, Li H, Chen Y Z, Chen F, Li S C, Liu C C, Wen W J, Wu C P, Yan B N 2018 AI-View 2 46Google Scholar

    [5]

    Yang R, Terabe K, Yao Y P, Tsuruoka T, Hasegawa T, Gimzewski J K, Aono M 2013 Nanotechnology 24 384003Google Scholar

    [6]

    Chen C, Yang M, Liu S, Liu T, Zhu K, Zhao Y, Wang H, Huang Q, Huang R 2019 Symposium on VLSI Technology (Kyoto: IEEE) p136

    [7]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [8]

    Tuma T, Pantazi A, Gallo M L, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [9]

    Cai J L, Fang B, Zhang L, Lv W X, Zhang B S, Zhou T J, Finocchio G, Zeng Z M 2019 Phys. Rev. Appl. 11 034015Google Scholar

    [10]

    Zhu J D, Zhang T, Yang Y C, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [11]

    Yue K, Liu Y Z, Lake R K, Parker A C 2019 Sci. Adv. 5 eaau8170Google Scholar

    [12]

    Fukami S, Ohno H 2018 J. Appl. Phys. 124 151904Google Scholar

    [13]

    Sengupta A, Choday S H, Y Kim, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [14]

    Fulara H, Zahedinejad M, Khymyn R, Dvornik M, Fukami S, Kanai S, Ohno H, Akerman J 2020 Nat. Commun. 11 4006Google Scholar

    [15]

    Dong I, Yoon G, Sik H, Park, Wanjun 2015 J. Appl. Phys. 117 17D714Google Scholar

    [16]

    Vincent A F, Jerome L, Locatelli N, Nesrine B R, Bichler O, Gamrat C, Zhao W S, Klein J O, Galdin-Retailleau S, Querlioz D 2015 IEEE T. Biomed. Circ. S 9 166Google Scholar

    [17]

    Chen Y B, Song M X, Wei B, Yang X K, Cui H Q, Liu J H, Li C 2020 IEEE Magn. Lett. 11 4504505Google Scholar

    [18]

    Kim Y, Fong X, Roy K 2015 IEEE Magn. Lett. 6 3001004Google Scholar

    [19]

    Fukushima A, Seki T, Yakushiji K, Kubota H, Imamura H, Yuasa S, Ando K 2014 Appl. Phys. Express 7 083001Google Scholar

    [20]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [21]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391Google Scholar

    [22]

    Carlton D B, Emley N C, Tuchfeldand E, Bokor J 2008 Nano Lett. 8 4173Google Scholar

    [23]

    Kurenkov A, DuttaGupta S, Zhang C H, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 1900636Google Scholar

    [24]

    Cai J L, Fang B, Wang C, Zeng Z M 2017 Appl. Phys. Lett. 111 182410Google Scholar

    [25]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv. Electron. Mater. 5 1800782Google Scholar

    [26]

    Zhang S, Su Y, Li X, Li R, Tian W, Hong J, You L 2019 Appl. Phys. Lett. 114 042401Google Scholar

    [27]

    Sheng Y, Edmonds K W, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [28]

    Cao Y, Rushforth A W, Sheng Y, Zheng H Z, Wang K Y 2019 Adv. Funct. Mater. 29 1808104Google Scholar

    [29]

    王宗巍, 杨玉超, 蔡一茂, 朱涛, 丛杨, 王志衡, 黄如 2019 中国科学基金 33 656Google Scholar

    Wang Z W, Yang Y C, Cai Y M, Zhu T, Cong Y, Wang Z H, Huang R 2019 Bulletin of National Natural Science Foundation of China 33 656Google Scholar

    [30]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [31]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062Google Scholar

    [32]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [33]

    Cowburn R P, Welland M E 2000 Science 287 1466Google Scholar

    [34]

    Locatelli N, Cros V, Grollier J 2013 Nat. Mater. 13 11Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Li X, Carka D, Liang C Y, Sepulveda A E, Keller S M, Amiri P K, Carman G P, Lynch C S 2015 J. Appl.Phys. 118 014101Google Scholar

    [37]

    王庆伟, 张晶晶, 马天宇, 严密 2009 稀有金属材料与工程 38 1234Google Scholar

    Wang Q W, Zhang J J, Ma T Y, Yan M 2009 Rare. Metal. Mat. Eng. 38 1234Google Scholar

    [38]

    Bertotti G, Serpico C, Mayergoyz I D 2009 Nonlinear Magnetization Dynamics in Nanosystems (Oxford: Elsevier) pp401−445

    [39]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D. Appl. Phys. 38 3333Google Scholar

    [40]

    Liyanagedera C M, Sengupta A, Jaiswal A, Roy K 2017 Phys. Rev. Appl. 8 064017Google Scholar

    [41]

    Glorot X, Bengio Y 2010 J. Mach. Learn. Res. 9 249

    [42]

    Fashami M S, Atulasimha J, Bandyopadhyay S 2012 Nanotechnology 23 105201Google Scholar

    [43]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [44]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2018 IEEE Electron Device Lett. 40 220Google Scholar

    [45]

    Das J, Alam S M, Bhanja S 2011 IEEE J. Emerg. Sel. Top. Circuits Syst. 1 267Google Scholar

  • [1] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [2] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [5] 黄颖, 顾长贵, 杨会杰. 神经网络超参数优化的删除垃圾神经元策略. 物理学报, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [6] 古亚娜, 梁燕, 王光义, 夏晨阳. NbOx忆阻神经元的设计及其在尖峰神经网络中的应用. 物理学报, 2022, 71(11): 110501. doi: 10.7498/aps.71.20220141
    [7] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [8] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [9] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [10] 陈爱天, 赵永刚. 多铁异质结构中逆磁电耦合效应的研究进展. 物理学报, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [11] 孙晓娟, 杨白桦, 吴晔, 肖井华. 异质神经元的排列对环形耦合神经元网络频率同步的影响. 物理学报, 2014, 63(18): 180507. doi: 10.7498/aps.63.180507
    [12] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [13] 郝建红, 高辉. 磁存储器环形带切口结构自由层磁化反转的微磁模拟. 物理学报, 2013, 62(5): 057502. doi: 10.7498/aps.62.057502
    [14] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步. 物理学报, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [15] 杨晓阔, 蔡理, 王久洪, 黄宏图, 赵晓辉, 李政操, 刘保军. 磁性量子元胞自动机功能阵列的实验研究. 物理学报, 2012, 61(4): 047502. doi: 10.7498/aps.61.047502
    [16] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究. 物理学报, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] 何国光, 曹志彤. 混沌神经网络的控制. 物理学报, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
    [19] 常胜江, 刘, 张文伟, 申金媛, 翟宏琛, 张延. 适用于神经元状态非等概率分布的神经网络模型及其光学实现. 物理学报, 1998, 47(7): 1101-1109. doi: 10.7498/aps.47.1101
    [20] 马余强, 张玥明, 龚昌德. Hopfield神经网络模型的恢复特性. 物理学报, 1993, 42(8): 1356-1360. doi: 10.7498/aps.42.1356
计量
  • 文章访问数:  4420
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-06-16
  • 上网日期:  2021-10-08
  • 刊出日期:  2021-10-20

/

返回文章
返回