搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算

苏文霞 陆海鸣 曾子芮 张一飞 刘剑 徐坤 王敦辉 都有为

引用本文:
Citation:

磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算

苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为

High-throughput computation on relationship between composition and magnetic phase transition temperature of LaFe11.5Si1.5-based magnetic refrigeration materials

Su Wen-Xia, Lu Hai-Ming, Zeng Zi-Rui, Zhang Yi-Fei, Liu Jian, Xu Kun, Wang Dun-Hui, Du You-Wei
PDF
HTML
导出引用
  • 获得具有不同磁相变温度的La(Fe, Si)13基合金对拓宽磁制冷工作温区具有重要意义. 借助第一性原理模拟软件AMS-BAND模块并结合平均场理论对LaFe11.5Si1.5基磁制冷合金的磁相变温度进行了高通量计算. 研究了Mn, Co, Ni, Al和Fe缺位掺杂对LaFe11.5Si1.5基合金体系相变温度的影响, 得到了成分与磁相变温度的关系图. 利用高通量第一性原理计算可以有效地降低研究成本, 提高科研效率, 并能够对后续实验选取具有合适磁相变温度的磁制冷材料提供技术支持.
    La(Fe, Si)13-based alloys have attracted more and more attention, for they exhibit giant magnetocaloric effects. In order to broaden their magnetic refrigeration temperatureranges, achieving a series of La(Fe, Si)13-based alloys with different magnetic phase transition temperatures is of great significance. Unlike the traditional research method, in this paper, a high-throughput first-principles computation is performed to estimate the magnetic phase transition temperature of the LaFe11.5Si1.5-based alloy by employing AMS-BAND software and the mean field theory. We investigate the effects of doping Mn, Co, Ni, Al atoms and Fe-vacancies on the magnetic phase transition temperature of LaFe11.5Si1.5-based alloy, and give the phase diagrams between the composition and magnetic phase transition temperature. The calculated results demonstrate that the magnetic phase transition temperature of the LaFe11.5Si1.5-based alloy increases with the increase of Co and Ni content. However, it shows an opposite result when Mn atom is doped. As for the LaFe11.5Si1.5-based alloy with the Fe-vacancies, the research results indicate that the absence of Fe atoms will reduce the magnetic phase transition temperature. Furthermore, when Mn, Co, Ni and Al atoms are doped in the alloys with Fe-vacancies, the variation tendency of the magnetic phase transition temperature with the change of the doping content is similar to that without the Fe-vacancies. Some estimated results are compared with the experimental or reported results, showing that they are in good agreement with each other. The PDOS and the magnetic moments of Fe atoms in the Mn, Co, Ni, Al-doped LaFe11.5Si1.5-based alloys are calculated, in which only the doping of Mn atoms can increase the magnetic moments of Fe atoms. Using the method of high-throughput first-principles calculation can effectively reduce the research cost and improve the working efficiency. In addition, it can provide technical support for the experimental selection of magnetocaloric materials with appropriate magnetic phase transition temperatures.
      通信作者: 陆海鸣, haimlu@nju.edu.cn ; 王敦辉, wangdh@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0702701)、国家自然科学基金(批准号: 51771091)和云南省地方本科高校联合专项重点项目(批准号: 2018FH001-001)资助的课题.
      Corresponding author: Lu Hai-Ming, haimlu@nju.edu.cn ; Wang Dun-Hui, wangdh@nju.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2017YFB0702701), the National Natural Science Foundation of China (Grant No. 51771091), and the Local Colleges Applied Basic Research Projects of Yunnan Province, China(Grant No. 2018FH001-001).
    [1]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [2]

    Brown G V 1976 J. Appl. Phys. 47 3673Google Scholar

    [3]

    Wang D H, Huang S L, Han Z D, Cao Q Q, Su Z H, Zou W Q, Du Y W 2004 J. Alloys Compd. 377 72Google Scholar

    [4]

    Wang D H, Huang S L, Han Z D, Su Z H, Wang Y, Du Y W 2004 Solid State Commun. 131 97Google Scholar

    [5]

    朱泓源, 夏宁, 黄立婷, 程娟, 张英德, 金培育, 张成, 黄焦宏 2019 稀土 2 63Google Scholar

    Zhu H Y, Xia N, Huang L T, Cheng J, Zhang Y D, Jin P Y, Zhang C, Huang J H 2019 Chin. Rare Earth. 2 63Google Scholar

    [6]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [7]

    Pecharsky V K, Gschneidner Jr K A 1999 Appl. Phys. 86 6315Google Scholar

    [8]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [9]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [10]

    Tegus O, Brück E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar

    [11]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar

    [12]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506Google Scholar

    [13]

    刘恩克, 王文洪, 张宏伟, 吴光恒 2012 中国材料进展 31 13Google Scholar

    Liu E K, Wang W H, Zhang H W, Wu G H 2012 Mater. Chin. 31 13Google Scholar

    [14]

    黄辉, 张龙, 刘煜, 刘合心 2010 制冷与空调 3 70Google Scholar

    Huang H, Zhang L, Liu Y, Liu H X 2010 Refrigeration and Air-Conditioning 3 70Google Scholar

    [15]

    Jacobs S, Auringer J, Boeder A 2014 Int. J. Refrig. 37 84Google Scholar

    [16]

    Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14Google Scholar

    [17]

    Barcza A, Katter M, Zellmann V, Russek S, Jacobs S, Zimm C 2011 IEEE Trans. Magn. 47 10Google Scholar

    [18]

    胡凤霞, 沈保根, 孙继荣, 王光军, 成昭华 2002 物理 31 139Google Scholar

    Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Physics 31 139Google Scholar

    [19]

    Moreno R L M, Romero M C, Law J Y, Franco V, Conde A, Radulovc A I, Maccaric F, Skokov K P, Gutfleisch O 2018 Acta Mater. 160 137Google Scholar

    [20]

    沈俊 2008 博士学位论文 (天津: 河北工业大学)

    Shen J 2008 Ph. D. Dissertation (Tianjin: Hebei University of Technology) (in Chinese)

    [21]

    Chang H, Chen N X, Liang J K, Rao G H 2003 J. Phys. :Condens. Matter 15 109Google Scholar

    [22]

    Beth S M 1971 Phys. Rev. B 4 4081Google Scholar

    [23]

    Beth S M 1972 Phys. Rev. B 6 3326Google Scholar

    [24]

    Beth S M 1973 Phys. Rev. B 8 4383Google Scholar

    [25]

    Beth S M 1976 Phys. Rev. B 13 1183Google Scholar

    [26]

    Beth S M 1978 J. Appl. Phys. 49 1555Google Scholar

    [27]

    Beth S M 1978 Phys. Rev. B 17 2809Google Scholar

    [28]

    Shick A B, Pickett W E, Fadley C S 2000 Phys. Rev. B 61 9213Google Scholar

    [29]

    Tribhuwan P, David S P 2018 Phys. Rev. Appl. 10 034038Google Scholar

    [30]

    Wiesenekker G, Baerends E J 1991 J. Phys.: Condens. Matter 3 6721Google Scholar

    [31]

    te Velde G, Baerends E J 1991 Phys. Rev. B 44 7888Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Boutahar A, Phejar M, Paul-Boncour V, Bessais L, Lassri H 2014 J. Supercond. Nov. Magn. 27 1795Google Scholar

    [34]

    Chen Y F, Wang F, Shen B G, Sun J R, Wang G J, Hu F X, Cheng Z H, Zhu T 2003 J. Appl. Phys. 93 6981Google Scholar

    [35]

    Talakesh S, Nourbakhsh Z 2019 Indian. J. Phys. 93 571Google Scholar

    [36]

    Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804Google Scholar

    [37]

    Hu J, Guan L, Fu S, Sun Y Y, Long Y 2014 J. Magn. Magn. Mater. 354 336Google Scholar

    [38]

    Sun S, Ye R C, Long Y 2013 Mater. Sci. Eng. B 178 60Google Scholar

    [39]

    胡义嘎, 松林, 王高峰, 李富安, 特古斯 2011 稀有金属 35 877Google Scholar

    Hu Y G, Song L, Wang G F, Li F A, Tegus O 2011 Chin. J. Rare Mater. 35 877Google Scholar

    [40]

    Dai H Y, Wang M M, Li T, Liu D W, Yang Y, Chen Z P 2021 Ceram. Int. 47 15139Google Scholar

  • 图 1  LaFe11.5Si1.5基合金晶体结构示意图

    Fig. 1.  Schematic image of the crystal structure of LaFe11.5Si1.5-based alloy.

    图 2  LaFe11.5–xyMnxCoySi1.5合金热磁曲线; 插图是dM/dT曲线

    Fig. 2.  Thermomagnetic curves of LaFe11.5–x–yMnxCoySi1.5 alloys, inset is the dM/dT.

    图 3  合金体系相变温度相图 (a) LaFe11.5–x–yMnxCoySi1.5; (b) LaFe11.5–x–yMnxAlySi1.5; (c) LaFe11.5–xyMnxNiySi1.5; (d) LaFe11.375–x–yMnxNiyCo0.125Si1.5

    Fig. 3.  The phase diagrams of phase transition temperature: (a) LaFe11.5–x-yMnxCoySi1.5; (b) LaFe11.5–x–yMnxAlySi1.5; (c) LaFe11.5–xyMnxNiySi1.5; (d) LaFe11.375–x–yMnxNiyCo0.125Si1.5 alloys.

    图 4  合金体系相变温度相图 (a) LaFe11.375–xyMnxNi ySi1.5; (b) LaFe11.375–xyMnxCoySi1.5; (c) LaFe11.25–xyMnxNiyCo0.125Si1.5; (d) LaFe11.25–xyMnxCoyNi0.125Si1.5

    Fig. 4.  The phase diagrams of phase transition temperature: (a) LaFe11.375–xyMnxNi ySi1.5; (b) LaFe11.375–xyMnxCoySi1.5; (c) LaFe11.25–xyMnxNiyCo0.125Si1.5; (d) LaFe11.25–xyMnxCoyNi0.125Si1.5 alloys.

    图 5  LaFe11.5–xTxSi1.5 (T = Al, Co, Mn, Ni)合金体系的PDOS图

    Fig. 5.  The PDOS of LaFe11.5–xTxSi1.5 (T = Co, Mn, Ni, Al) alloys.

    图 6  LaFe11.375–xMnxCo0.125Si1.5合金体系中Fe的磁矩

    Fig. 6.  The magnetic moment of Fe atom in LaFe11.375–xMnxCo0.125Si1.5 alloys.

  • [1]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [2]

    Brown G V 1976 J. Appl. Phys. 47 3673Google Scholar

    [3]

    Wang D H, Huang S L, Han Z D, Cao Q Q, Su Z H, Zou W Q, Du Y W 2004 J. Alloys Compd. 377 72Google Scholar

    [4]

    Wang D H, Huang S L, Han Z D, Su Z H, Wang Y, Du Y W 2004 Solid State Commun. 131 97Google Scholar

    [5]

    朱泓源, 夏宁, 黄立婷, 程娟, 张英德, 金培育, 张成, 黄焦宏 2019 稀土 2 63Google Scholar

    Zhu H Y, Xia N, Huang L T, Cheng J, Zhang Y D, Jin P Y, Zhang C, Huang J H 2019 Chin. Rare Earth. 2 63Google Scholar

    [6]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [7]

    Pecharsky V K, Gschneidner Jr K A 1999 Appl. Phys. 86 6315Google Scholar

    [8]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [9]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [10]

    Tegus O, Brück E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar

    [11]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar

    [12]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506Google Scholar

    [13]

    刘恩克, 王文洪, 张宏伟, 吴光恒 2012 中国材料进展 31 13Google Scholar

    Liu E K, Wang W H, Zhang H W, Wu G H 2012 Mater. Chin. 31 13Google Scholar

    [14]

    黄辉, 张龙, 刘煜, 刘合心 2010 制冷与空调 3 70Google Scholar

    Huang H, Zhang L, Liu Y, Liu H X 2010 Refrigeration and Air-Conditioning 3 70Google Scholar

    [15]

    Jacobs S, Auringer J, Boeder A 2014 Int. J. Refrig. 37 84Google Scholar

    [16]

    Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14Google Scholar

    [17]

    Barcza A, Katter M, Zellmann V, Russek S, Jacobs S, Zimm C 2011 IEEE Trans. Magn. 47 10Google Scholar

    [18]

    胡凤霞, 沈保根, 孙继荣, 王光军, 成昭华 2002 物理 31 139Google Scholar

    Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Physics 31 139Google Scholar

    [19]

    Moreno R L M, Romero M C, Law J Y, Franco V, Conde A, Radulovc A I, Maccaric F, Skokov K P, Gutfleisch O 2018 Acta Mater. 160 137Google Scholar

    [20]

    沈俊 2008 博士学位论文 (天津: 河北工业大学)

    Shen J 2008 Ph. D. Dissertation (Tianjin: Hebei University of Technology) (in Chinese)

    [21]

    Chang H, Chen N X, Liang J K, Rao G H 2003 J. Phys. :Condens. Matter 15 109Google Scholar

    [22]

    Beth S M 1971 Phys. Rev. B 4 4081Google Scholar

    [23]

    Beth S M 1972 Phys. Rev. B 6 3326Google Scholar

    [24]

    Beth S M 1973 Phys. Rev. B 8 4383Google Scholar

    [25]

    Beth S M 1976 Phys. Rev. B 13 1183Google Scholar

    [26]

    Beth S M 1978 J. Appl. Phys. 49 1555Google Scholar

    [27]

    Beth S M 1978 Phys. Rev. B 17 2809Google Scholar

    [28]

    Shick A B, Pickett W E, Fadley C S 2000 Phys. Rev. B 61 9213Google Scholar

    [29]

    Tribhuwan P, David S P 2018 Phys. Rev. Appl. 10 034038Google Scholar

    [30]

    Wiesenekker G, Baerends E J 1991 J. Phys.: Condens. Matter 3 6721Google Scholar

    [31]

    te Velde G, Baerends E J 1991 Phys. Rev. B 44 7888Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Boutahar A, Phejar M, Paul-Boncour V, Bessais L, Lassri H 2014 J. Supercond. Nov. Magn. 27 1795Google Scholar

    [34]

    Chen Y F, Wang F, Shen B G, Sun J R, Wang G J, Hu F X, Cheng Z H, Zhu T 2003 J. Appl. Phys. 93 6981Google Scholar

    [35]

    Talakesh S, Nourbakhsh Z 2019 Indian. J. Phys. 93 571Google Scholar

    [36]

    Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804Google Scholar

    [37]

    Hu J, Guan L, Fu S, Sun Y Y, Long Y 2014 J. Magn. Magn. Mater. 354 336Google Scholar

    [38]

    Sun S, Ye R C, Long Y 2013 Mater. Sci. Eng. B 178 60Google Scholar

    [39]

    胡义嘎, 松林, 王高峰, 李富安, 特古斯 2011 稀有金属 35 877Google Scholar

    Hu Y G, Song L, Wang G F, Li F A, Tegus O 2011 Chin. J. Rare Mater. 35 877Google Scholar

    [40]

    Dai H Y, Wang M M, Li T, Liu D W, Yang Y, Chen Z P 2021 Ceram. Int. 47 15139Google Scholar

  • [1] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦. 物理学报, 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [3] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [4] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [5] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [6] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [7] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [8] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究. 物理学报, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [11] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究. 物理学报, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [12] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [13] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [16] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [19] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [20] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
计量
  • 文章访问数:  4040
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-06-09
  • 上网日期:  2021-10-14
  • 刊出日期:  2021-10-20

/

返回文章
返回