搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器

夏永顺 杨晓阔 豆树清 崔焕卿 危波 梁卜嘉 闫旭

引用本文:
Citation:

基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器

夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭

Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet

Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu
PDF
HTML
导出引用
  • 本文提出了一种由8个磁性隧道结(magnetic tunnel junction, MTJ)构成的3位磁弹模数转换器(magneto-elastic analog-to-digital converter, MEADC), 该转换器中MTJ自由层为双组分多铁纳磁体. 通过对多铁纳磁体实施应变介导的电压调控, 可以实现零场条件下的确定性磁化翻转. 研究发现: 对于给定尺寸, 给定材料的双组分多铁纳磁体, 压电层厚度与双组分多铁纳磁体的临界翻转电压线性相关. 基于该原理, 通过调整压电层的厚度使得MEADC具有8个不同的电压切换阈值, 将模拟信号转换为8个多铁MTJ不同磁化状态组合. 同时, 设计了锁存比较器和独立的读取电路来检测MTJ的阻态, 以此实现了数字信号的输出. Monte Carlo功能模拟表明: 该MEADC在室温下写入成功率可达100%; 此外, 读写电路相互分离, 使得压电层厚度与MTJ的输出参考电压无关, 因此每个MTJ可设置相同的参考电压, 从而具有更高的读取可靠性. 微磁仿真和数值模拟分析发现: 该MEADC的工作频率可达250 MHz, 单次转换能耗仅为20 aJ; 与基于Racetrack技术的磁模数转换器相比, 能耗降低了1000倍, 采样速率提高了10倍. 本文提出的MEADC可为基于自旋电子器件的存算一体电路架构提供重要的技术支撑.
    In recent years, the utilization of artificial intelligence and big data has led to the rise of compute-in-memory signal processing as the primary method for ADC design. Spintronic memory devices, which have non-volatile and low static power consumption characteristics, are particularly suitable for the design of low-power, high-bandwidth compute-in-memory ADCs.In this paper, a 3-bit magneto-elastic analog-to-digital converter (MEADC) is proposed, which comprises eight magnetic tunnel junctions (MTJs), where the MTJ free layer is a bicomponent multiferroic nanomagnet. The bicomponent multiferroic nanomagnet can attain deterministic magnetization switching under zero-field condition by regulating the strain-mediated voltage. It has been discovered that there is a linear correlation between the thickness of the piezoelectric layer and the critical flip voltage in a bicomponent multiferroic nanomagnet of a given size and material. Using this principle, the thickness of the piezoelectric layer is adjusted to allow the MEADC to have eight different voltage switching thresholds. This can make the analog signal converted into a combination of different magnetization states of eight multiferroic MTJ. A latch comparator and an independent read circuit are designed to detect the MTJ’s resistance state output a digital signal. Monte Carlo simulations indicate that the MEADC can achieve a 100% success rate of writing at room temperature. Additionally, the read circuit and write circuit are separated from each other, thus the same reference voltage can be set for each MTJ and result in higher readability. Micromagnetic simulation and numerical analysis demonstrate that the MEADC can operate at a maximum frequency of 250 MHz, and the energy consumption of a single conversion is only 20 aJ. Compared with the magnetic analog-to-digital converter based on the Racetrack technology, the energy consumption is reduced by 1000 times, and the sampling rate is increased by 10 times. The MEADC proposed in this paper offers an essential technical support for the spintronics-based compute-in-memory integrated circuit architecture.
      通信作者: 杨晓阔, yangxk0123@163.com
    • 基金项目: 国家自然科学基金(批准号: 62274183, 62301595)和陕西省自然科学基础研究计划(批准号: 2022JQ-073)资助的课题.
      Corresponding author: Yang Xiao-Kuo, yangxk0123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62274183, 62301595) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2022JQ-073).
    [1]

    Murmann B 2015 IEEE Solid-State Circuits Mag. 7 58Google Scholar

    [2]

    Zhang S, Huang K, Shen H 2020 IEEE T. Circuits I 67 1867Google Scholar

    [3]

    Jiang Y F, Lü Y, Jamali M, Wang J P 2015 IEEE Electron Device Lett. 36 511Google Scholar

    [4]

    Salehi S, DeMara R F 2018 Microelectron. J. 81 137Google Scholar

    [5]

    Wu B, Wang Z H, Li Y X, Wang Y, Liu D J, Zhao W S, Hu X B S 2021 IEEE T. Circuits II 68 617Google Scholar

    [6]

    Xia Y S, Yang X K, Dou S Q, Cui H Q, Wei B, Liang B J, Yan X 2024 AIP Adv. 14 045239Google Scholar

    [7]

    Wang Z 1991 IEEE T. Circuits Syst. 38 660Google Scholar

    [8]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y, Zhang M, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [9]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2017 Nano Lett. 17 3478Google Scholar

    [10]

    Bandyopadhyay S, Atulasimha J, Barman A 2021 Appl. Phys. Rev. 8 041323Google Scholar

    [11]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135Google Scholar

    [12]

    Salehi-Fashami M, D’Souza N 2017 J. Magn. Magn. Mater. 438 76Google Scholar

    [13]

    Chen Y B, Wei B, Yang X K, Liu J H, Li J, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [14]

    Ghanatian H, Farkhani H, Rezaeiyan Y, Bohnert T, Ferreira R, Moradi F 2022 IEEE Trans. Electron Devices 69 1691Google Scholar

    [15]

    Brown W F 1963 Phys. Rev 130 1677Google Scholar

    [16]

    Zeng J W, Yi P Y, Chen B Y, Huang C L, Qi X L, Qiu S, Fang L 2021 Microelectron. J. 116 105235Google Scholar

    [17]

    Fashami M S, Atulasimha J, Bandyopadhyay S J N 2012 Nanotechnology 23 105201Google Scholar

    [18]

    Peng R C, Hu J M, Momeni K, Wang J J, Chen L Q, Nan C W 2016 Sci. Rep. 6 27561Google Scholar

    [19]

    Dou S Q, Yang X K, Yuan J H, Xia Y S, Bai X, Cui H Q, Wei B 2023 IEEE Magn. Lett. 14 4500305Google Scholar

    [20]

    豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文 2023 物理学报 72 157501Google Scholar

    Dou S Q, Yang X K, Xia Y S, Yuan J H, Cui H Q, Wei B, Bai X, Feng C W 2023 Acta Physica Sinica 72 157501Google Scholar

    [21]

    He Z, Fan D 2016 Proceedings of the 2016 International Symposium on Low Power Electronics and Design San Francisco, August 8–10, 2016 p314

    [22]

    Park C J, Geddada H M, Karsilayan A I, Silva-Martinez J, Onabajo M 2013 Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) Beijing, May 19–23, 2013 p141

    [23]

    Dong Q, Yang K Y, Fick L, Fick D, Blaauw D, Sylvester D 2017 IEEE Trans. Very Large Scale Integr. VLSI Syst. 25 907Google Scholar

    [24]

    Qi X L, Yi P Y, Liu J H, Li C, Chen Y B, Qiu S, Xu N, Fang L 2021 IEEE Magn. Lett. 12 4503305Google Scholar

  • 图 1  基于MTJ的电压比较器

    Fig. 1.  Voltage comparator based on MTJ.

    图 2  双组分纳磁体的y方向磁化分量随时间的变化

    Fig. 2.  Variation with time of the y-direction magnetization component of a bicomponent nanomagnet.

    图 3  临界电压随压电层厚度的变化曲线

    Fig. 3.  Curve of critical voltage as function of piezoelectric layer thickness.

    图 4  由8个电压比较器构成的3位磁弹模数转换器

    Fig. 4.  3-bit magneto-elastic analog-to-digital converter consisting of 8 voltage comparators.

    图 5  MEADC的控制信号时序图

    Fig. 5.  Control signal time diagram of magneto-elastic analog-to-digital converter.

    图 6  MEADC的转换、读取、复位三阶段输入输出仿真波形图 (a) Vc4 < Vwrite < Vc5; (b) Vc0 < Vwrite < Vc1; (c) Vc6 < Vwrite < Vc7

    Fig. 6.  Simulation waveforms of MEADC including conversion, read, and reset: (a) Vc4 < Vwrite < Vc5; (b) Vc0 < Vwrite < Vc1; (c) Vc6 < Vwrite < Vc7.

    图 7  室温下N0—N7进行500次蒙特卡罗模拟的结果

    Fig. 7.  Results of 500 Monte Carlo simulations of N0–N7 at room temperature.

    表 1  材料参数表[13]

    Table 1.  Material parameters[13].

    参数 Tb0.7Dy0.3Fe2 Ni
    杨氏模量 Y/(1010 Pa) 8 21.4
    磁致伸缩系数 λs/10–4 6.0 -0.2
    吉尔伯特阻尼系数 α 0.100 0.045
    回磁比 γ /(105 rad·s–1·T–1) 2.21 2.21
    饱和磁化率 Ms/(105 A·m–1) 8.00 4.85
    交换作用常数 A/(10–11 J·m–1) 0.90 1.05
    下载: 导出CSV

    表 2  MEADC输入输出

    Table 2.  MEADC input/output.

    Vwrite/mVSout7-0Binary
    0—8.5300000000000
    8.53—9.3800000001001
    9.38—10.2400000011010
    10.24—11.0900000111011
    11.09—11.9500001111100
    11.95—12.8000011111101
    12.80—13.6600111111110
    13.66—14.5101111111111
    14.51—11111111
    下载: 导出CSV

    表 3  不同类型Flash ADC

    Table 3.  Different types of Flash ADCs.

    类型分辨位数最大转换频率转换能耗
    VCMA[3]3-bit9 GHz0.35 pJ
    SHE-MTJ[21]3-bit500 MHz0.48 pJ
    SHE-DWM[4]2-bit1 GHz0.079 pJ
    CMOS[22]4-bit20 MHz5 pJ
    Racetrack[23]8-bit20 MHz0.021 pJ
    Dual-Bit MEADC[24]3-bit667 MHz0.17 pJ
    本文MEADC3-bit1 GHz20 aJ
    下载: 导出CSV
  • [1]

    Murmann B 2015 IEEE Solid-State Circuits Mag. 7 58Google Scholar

    [2]

    Zhang S, Huang K, Shen H 2020 IEEE T. Circuits I 67 1867Google Scholar

    [3]

    Jiang Y F, Lü Y, Jamali M, Wang J P 2015 IEEE Electron Device Lett. 36 511Google Scholar

    [4]

    Salehi S, DeMara R F 2018 Microelectron. J. 81 137Google Scholar

    [5]

    Wu B, Wang Z H, Li Y X, Wang Y, Liu D J, Zhao W S, Hu X B S 2021 IEEE T. Circuits II 68 617Google Scholar

    [6]

    Xia Y S, Yang X K, Dou S Q, Cui H Q, Wei B, Liang B J, Yan X 2024 AIP Adv. 14 045239Google Scholar

    [7]

    Wang Z 1991 IEEE T. Circuits Syst. 38 660Google Scholar

    [8]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y, Zhang M, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [9]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2017 Nano Lett. 17 3478Google Scholar

    [10]

    Bandyopadhyay S, Atulasimha J, Barman A 2021 Appl. Phys. Rev. 8 041323Google Scholar

    [11]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135Google Scholar

    [12]

    Salehi-Fashami M, D’Souza N 2017 J. Magn. Magn. Mater. 438 76Google Scholar

    [13]

    Chen Y B, Wei B, Yang X K, Liu J H, Li J, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [14]

    Ghanatian H, Farkhani H, Rezaeiyan Y, Bohnert T, Ferreira R, Moradi F 2022 IEEE Trans. Electron Devices 69 1691Google Scholar

    [15]

    Brown W F 1963 Phys. Rev 130 1677Google Scholar

    [16]

    Zeng J W, Yi P Y, Chen B Y, Huang C L, Qi X L, Qiu S, Fang L 2021 Microelectron. J. 116 105235Google Scholar

    [17]

    Fashami M S, Atulasimha J, Bandyopadhyay S J N 2012 Nanotechnology 23 105201Google Scholar

    [18]

    Peng R C, Hu J M, Momeni K, Wang J J, Chen L Q, Nan C W 2016 Sci. Rep. 6 27561Google Scholar

    [19]

    Dou S Q, Yang X K, Yuan J H, Xia Y S, Bai X, Cui H Q, Wei B 2023 IEEE Magn. Lett. 14 4500305Google Scholar

    [20]

    豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文 2023 物理学报 72 157501Google Scholar

    Dou S Q, Yang X K, Xia Y S, Yuan J H, Cui H Q, Wei B, Bai X, Feng C W 2023 Acta Physica Sinica 72 157501Google Scholar

    [21]

    He Z, Fan D 2016 Proceedings of the 2016 International Symposium on Low Power Electronics and Design San Francisco, August 8–10, 2016 p314

    [22]

    Park C J, Geddada H M, Karsilayan A I, Silva-Martinez J, Onabajo M 2013 Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) Beijing, May 19–23, 2013 p141

    [23]

    Dong Q, Yang K Y, Fick L, Fick D, Blaauw D, Sylvester D 2017 IEEE Trans. Very Large Scale Integr. VLSI Syst. 25 907Google Scholar

    [24]

    Qi X L, Yi P Y, Liu J H, Li C, Chen Y B, Qiu S, Xu N, Fang L 2021 IEEE Magn. Lett. 12 4503305Google Scholar

  • [1] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [2] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能. 物理学报, 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [3] 袁佳卉, 杨晓阔, 张斌, 陈亚博, 钟军, 危波, 宋明旭, 崔焕卿. 混合时钟驱动的自旋神经元器件激活特性和计算性能. 物理学报, 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [4] 牛鹏斌, 罗洪刚. 马约拉纳费米子与杂质自旋相互作用的热偏压输运. 物理学报, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [5] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [6] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [7] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应. 物理学报, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [8] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [9] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [10] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [11] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究. 物理学报, 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [12] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [13] 杨晓阔, 蔡理, 王久洪, 黄宏图, 赵晓辉, 李政操, 刘保军. 磁性量子元胞自动机功能阵列的实验研究. 物理学报, 2012, 61(4): 047502. doi: 10.7498/aps.61.047502
    [14] 刘德, 张红梅, 贾秀敏. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应. 物理学报, 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [15] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [16] 彭子龙, 韩秀峰, 赵素芬, 魏红祥, 杜关祥, 詹文山. 磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转. 物理学报, 2006, 55(2): 860-864. doi: 10.7498/aps.55.860
    [17] 冯玉清, 侯利娜, 朱 涛, 姚淑德, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究. 物理学报, 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [18] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [19] 张 喆, 朱 涛, 冯玉清, 张 泽. Co基磁性隧道结势垒结构的电子全息研究. 物理学报, 2005, 54(12): 5861-5866. doi: 10.7498/aps.54.5861
    [20] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法. 物理学报, 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
计量
  • 文章访问数:  1493
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-05-16
  • 上网日期:  2024-05-20
  • 刊出日期:  2024-07-05

/

返回文章
返回