搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同耦合下混沌神经元网络的同步

吴望生 唐国宁

引用本文:
Citation:

不同耦合下混沌神经元网络的同步

吴望生, 唐国宁

Synchronizations of chaotic neuronal networks under different couplings

Wu Wang-Sheng, Tang Guo-Ning
PDF
导出引用
  • 采用Hindmarsh-Rose神经元动力学模型, 对二维点阵上的神经元网络的同步进行了研究. 为了解不同耦合对网络同步的影响, 提出了一般反馈耦合、分层反馈耦合和分层局域平均场反馈耦合三种方案.研究表明:在耦合强度较小的近邻耦合下, 一般反馈耦合不能使网络达到完全同步, 而分层反馈耦合和分层局域平均场反馈耦合可以使网络出现局部同步和全局同步. 不同形式的耦合会导致网络出现不同的斑图, 随着耦合强度的增大, 网络从不同步到同步的过程也不相同, 一般反馈耦合和分层反馈耦合网络是突然出现全局同步, 同步之前网络出现非周期性的相干斑图; 对于分层局域平均场反馈耦合网络, 同层神经元之间先出现从簇放电同步到同步的转变, 形成靶波, 然后同步区由中心向外逐渐扩大, 最终达到网络的全局同步. 这些结果表明, 只有适当的耦合才能实现信号的无损耗的传递. 此外我们发现分层局域平均场反馈耦合可以促进网络的同步.
    The synchronization of a two-dimensional (2D) neuronal network is investigated, based on the dynamical model of Hindmarsh-Rose neuron. In order to know the effects of different types of coupling on the synchronization of a network, we propose three coupling schemes. They are the general feedback coupling, the hierarchical feedback couplings with and without local mean field. The numerical results show that when the neighbor coupling strength is small, the hierarchical feedback couplings with and without local mean field can achieve local and global synchronizations of the network, whereas the general feedback coupling cannot achieve global synchronization. Different couplings generate different patterns in the corresponding network, so that the processes of the transition from asynchronization to synchronization in the networks are different. With the increase of coupling strength, the synchronization in the network with the general feedback or hierarchical feedback couplings is suddenly established, and the networks exhibit different coherent patterns that are aperiodic before the global synchronization occurs. However, the network with hierarchical feedback couplings and local mean field exhibits the different synchronous processes. The neurons in the same layer first achieve the transition from bursting synchronization to global synchronization, leading to the formation of target wave. Then, the synchronization region gradually expands from the center of the network. Finally, the whole networks can achieve synchronization. These results show that the lossless signal transmission can be achieved only if the appropriate coupling is applied. In addition, we find that the hierarchical feedback coupling with local mean field can facilitate synchronization.
    • 基金项目: 国家自然科学基金(批准号:11165004, 10765002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11165004, 10765002).
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Baptista M S, Moukam Kakmeni F M, Grebogi C 2010 Phys. Rev.E 82 036203

    [3]

    Rappel W J, Karma A 1996 Phys. Rev. Lett. 77 3256

    [4]

    Dhamala M, Jirsa V K, DingMZ 2004 Phys. Rev. Lett. 92 074104

    [5]

    Rosenblum M G, Pikovsky A S 2004 Phys. Rev. Lett. 92 114102

    [6]

    Yu H J, Tong W J 2009 Acta Phys. Sin. 58 2977 (in Chinese)[于洪吉, 童伟君 2009 物理学报 58 2977]

    [7]

    Zhou J, Liu Z H 2008 Phys. Rev. E 77 056213

    [8]

    Tang Y, Qiu R, Fang J A, Miao Q Y 2008 Phys. Lett. A 372 4425

    [9]

    Wang H X, Lu Q S, Wang Q Y 2005 Chin. Phys. Lett. 22 2173

    [10]

    He G G, Zhu P, Chen H P, Xie X P 2010 Acta Phys. Sin. 595307(in Chinese)[何国光, 朱萍, 陈宏平, 谢小平 2010物理学报 59 5307]

    [11]

    Shahverdiev E M, Shore K A 2005 Phys. Rev. E 71 016201

    [12]

    Wang H X, Lu Q S, Shi X 2010 Chin. Phys. B 19 060509

    [13]

    Zeitler M, Daffertshofer A, Gielen C C A M 2009 Phys. Rev. E79 065203

    [14]

    Englert A, Kinzel W, Aviad Y, Butkovski M, Reidler I, Zigzag M,Kanter I, Rosenbluh M 2010 Phys. Rev. Lett. 104 114102

    [15]

    Ma J, Su WT, Gao J Z 2010 Acta Phys. Sin. 59 1554 (in Chinese)[马军, 苏文涛, 高加振 2010 物理学报 59 1554]

    [16]

    Yu J, Hu C, Jiang H J, Teng Z D 2011 Neurocomputing 74 1776

    [17]

    Wang Q Y, Chen G R, Perc M 2011 PLoS ONE 6 e15851

    [18]

    Shi X, Lu Q S 2007 Chin. Phys. Lett. 24 636

    [19]

    Sheeba J H, Chandrasekar V K, Lakshmanan M 2009 Phys. Rev.E 79 055203

    [20]

    Huerta R, Bhazenov M, Rabinovich M I 1998 Europhys. Lett. 43719

    [21]

    Mainieri M S, Erichsen Jr R, Brunnet L G 2005 Physica A 354663

    [22]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [23]

    Lu Q S, Liu S Q, Liu F, Wang Q Y, Hou Z H, Zheng Y H 2008Adv. Mech. 38 766 (in Chinese)[陆启韶, 刘深泉, 刘峰, 王青云, 候中怀, 郑艳红 2008 力学进展 38 766]

  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Baptista M S, Moukam Kakmeni F M, Grebogi C 2010 Phys. Rev.E 82 036203

    [3]

    Rappel W J, Karma A 1996 Phys. Rev. Lett. 77 3256

    [4]

    Dhamala M, Jirsa V K, DingMZ 2004 Phys. Rev. Lett. 92 074104

    [5]

    Rosenblum M G, Pikovsky A S 2004 Phys. Rev. Lett. 92 114102

    [6]

    Yu H J, Tong W J 2009 Acta Phys. Sin. 58 2977 (in Chinese)[于洪吉, 童伟君 2009 物理学报 58 2977]

    [7]

    Zhou J, Liu Z H 2008 Phys. Rev. E 77 056213

    [8]

    Tang Y, Qiu R, Fang J A, Miao Q Y 2008 Phys. Lett. A 372 4425

    [9]

    Wang H X, Lu Q S, Wang Q Y 2005 Chin. Phys. Lett. 22 2173

    [10]

    He G G, Zhu P, Chen H P, Xie X P 2010 Acta Phys. Sin. 595307(in Chinese)[何国光, 朱萍, 陈宏平, 谢小平 2010物理学报 59 5307]

    [11]

    Shahverdiev E M, Shore K A 2005 Phys. Rev. E 71 016201

    [12]

    Wang H X, Lu Q S, Shi X 2010 Chin. Phys. B 19 060509

    [13]

    Zeitler M, Daffertshofer A, Gielen C C A M 2009 Phys. Rev. E79 065203

    [14]

    Englert A, Kinzel W, Aviad Y, Butkovski M, Reidler I, Zigzag M,Kanter I, Rosenbluh M 2010 Phys. Rev. Lett. 104 114102

    [15]

    Ma J, Su WT, Gao J Z 2010 Acta Phys. Sin. 59 1554 (in Chinese)[马军, 苏文涛, 高加振 2010 物理学报 59 1554]

    [16]

    Yu J, Hu C, Jiang H J, Teng Z D 2011 Neurocomputing 74 1776

    [17]

    Wang Q Y, Chen G R, Perc M 2011 PLoS ONE 6 e15851

    [18]

    Shi X, Lu Q S 2007 Chin. Phys. Lett. 24 636

    [19]

    Sheeba J H, Chandrasekar V K, Lakshmanan M 2009 Phys. Rev.E 79 055203

    [20]

    Huerta R, Bhazenov M, Rabinovich M I 1998 Europhys. Lett. 43719

    [21]

    Mainieri M S, Erichsen Jr R, Brunnet L G 2005 Physica A 354663

    [22]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [23]

    Lu Q S, Liu S Q, Liu F, Wang Q Y, Hou Z H, Zheng Y H 2008Adv. Mech. 38 766 (in Chinese)[陆启韶, 刘深泉, 刘峰, 王青云, 候中怀, 郑艳红 2008 力学进展 38 766]

  • [1] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变. 物理学报, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [2] 白婧, 关富荣, 唐国宁. 神经元网络中局部同步引发的各种效应. 物理学报, 2021, 70(17): 170502. doi: 10.7498/aps.70.20210142
    [3] 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报, 2021, 70(8): 080501. doi: 10.7498/aps.70.20201251
    [4] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步. 物理学报, 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [5] 黄志精, 李倩昀, 白婧, 唐国宁. 在具有排斥耦合的神经元网络中有序斑图的熵测量. 物理学报, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [6] 汪芃, 李倩昀, 唐国宁. Hindmarsh-Rose神经元阵列自发产生螺旋波的研究. 物理学报, 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [7] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [8] 戴存礼, 吴威, 赵艳艳, 姚雪霞, 赵志刚. 权重分布对加权局域世界网络动力学同步的影响. 物理学报, 2013, 62(10): 108903. doi: 10.7498/aps.62.108903
    [9] 马军, 苏文涛, 高加振. Hindmarsh-Rose混沌神经元自适应同步和参数识别的优化研究. 物理学报, 2010, 59(3): 1554-1561. doi: 10.7498/aps.59.1554
    [10] 何国光, 朱萍, 陈宏平, 谢小平. 阈值耦合混沌神经元的同步研究. 物理学报, 2010, 59(8): 5307-5312. doi: 10.7498/aps.59.5307
    [11] 刘勇, 谢勇. 分数阶FitzHugh-Nagumo模型神经元的动力学特性及其同步. 物理学报, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [12] 吴然超. 时滞离散神经网络的同步控制. 物理学报, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [13] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步. 物理学报, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [14] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步. 物理学报, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [15] 马 军, 廖高华, 莫晓华, 李维学, 张平伟. 超混沌系统的间歇同步与控制. 物理学报, 2005, 54(12): 5585-5590. doi: 10.7498/aps.54.5585
    [16] 陶朝海, 陆君安. 混沌系统的速度反馈同步. 物理学报, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] 吴 王莹, 徐健学, 何岱海, 靳伍银. 两个非耦合Hindmarsh-Rose神经元同步的非线性特征研究. 物理学报, 2005, 54(7): 3457-3464. doi: 10.7498/aps.54.3457
    [18] 卢志刚, 于灵慧, 柳晓菁, 高美静, 吴士昌. 克服扰动的混沌逆控制同步系统. 物理学报, 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
    [19] 赖建文, 周世平, 李国辉, 徐得名. 间歇驱动混沌同步法. 物理学报, 2001, 50(1): 21-25. doi: 10.7498/aps.50.21
    [20] 关新平, 唐英干, 范正平, 王益群. 基于神经网络的混沌系统鲁棒自适应同步. 物理学报, 2001, 50(11): 2112-2115. doi: 10.7498/aps.50.2112
计量
  • 文章访问数:  8048
  • PDF下载量:  958
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-08
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回