搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀土金属Dy/Pt/[Co/Pt]3磁性多层膜的自旋轨道矩

李栋 来艳萍 刘喜悦

引用本文:
Citation:

基于稀土金属Dy/Pt/[Co/Pt]3磁性多层膜的自旋轨道矩

李栋, 来艳萍, 刘喜悦

Investigation of spin-orbit torques in rare-earth Dy/Pt/[Co/Pt]3 magnetic multilayers

LI Dong, LAI Yanping, LIU Xiyue
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 具有强自旋轨道耦合(SOC)效应的稀土金属因其可以产生自旋霍尔矩有望在低功耗磁信息存储、逻辑运算和神经元模拟器件中发挥潜在作用. 本文选用重稀土金属镝(Dy)作为自旋源层, [Co/Pt]3作为磁性层构建Dy/Pt/[Co/Pt]3垂直磁化多层膜, 探究了不同Dy层厚度对体系自旋轨道矩(SOT)效率以及SOT驱动磁矩翻转的影响规律. 利用谐波锁相技术分析得到稀土金属Dy的内禀自旋霍尔角为0.260±0.039, 自旋扩散长度为(2.234±0.383) nm, 表明Dy可以作为理想的自旋源材料. 此外, 基于体系类阻尼SOT效率的有效提升, 临界翻转电流密度随Dy层厚度增加而逐渐降低, 最低约为5.3×106 A/cm2. 以上研究结果证实稀土金属Dy存在强的自旋霍尔效应, 为设计低功耗SOT基自旋电子器件提供了有效路径.
    Spin-orbit torque (SOT) based on the spin-orbit coupling (SOC) effect has received increasing attention in magnetic information storage, logical operation and neuron simulation devices because it can effectively manipulate magnetization conversion, chiral magnetic domain walls, and magnetic skyrmion motions. Further improvement of the SOT efficiency and reduction of the driving current density are crucial scientific problems to be solved for high-density and low-power applications of SOT-based spintronic devices. The heavy rare-earth metal dysprosium (Dy) possesses a relatively strong SOC due to the partially filled f orbital electrons (4f10), which is expected to generate spin Hall torques. In this work, the influences of Dy thickness on the SOT efficiency and SOT-driven magnetic reversal are explored in the Dy/Pt/[Co/Pt]3 magnetic multilayers, where the rare-earth Dy and [Co/Pt]3 are used as a spin-source layer and a perpendicularly magnetized ferromagnetic layer, respectively. A series of Dy/Pt/[Co/Pt]3 heterostructures with the values of Dy layer thickness (tDy) of 1, 3, 5 and 7 nm is fabricated by ultrahigh-vacuum magnetron sputtering. The perpendicular magnetic anisotropy, SOT efficiency, spin Hall angle and current-induced magnetization switching are characterized using the magnetic property and electrical transport measurements. The results show that the conversion field and magnetic anisotropic field decrease with the increase of tDy, revealing that the magnetic parameters can be regulated by the bottom Dy layer due to their structural sensitivity. However, both damping-like SOT efficiency and effective spin Hall angle (θeff SH) gradually increase with the increase of tDy, indicating that the rare-earth Dy can provide additional spin current to enhance the SOT efficiency apart from the contribution of Pt/[Co/Pt]3. Particularly, the maximum value of θeff SHof 0.379±0.008 is achieved when tDy is 7 nm. According to the fitting analysis of the drift-diffusion model, the intrinsic spin Hall angle and spin diffusion length of the rare-earth Dy are extracted to be 0.260±0.039 and (2.234±0.383) nm, respectively, suggesting that Dy can be used as an ideal spin-source material. In addition, the critical conversion current density (Jc) gradually decreases with the increase of tDy, and Jc reaches a minimum value of approximately 5.3×106 A/cm2 at tDy = 7 nm, which is mainly attributed to the increase of the damping-like SOT and slight decrease of the switching field. These results experimentally demonstrate a strong spin Hall effect of the rare-earth Dy, and provide a feasible route for designing SOT-based spintronic devices with low-power dissipation.
  • 图 1  (a) Dy/Pt/[Co/Pt]3多层膜的结构示意图; (b)霍尔器件的光学显微图像和电输运测量示意图; (c)不同Dy厚度样品的反常霍尔曲线, 测试电流为1 mA, 插图为t = 7 nm样品的面内磁滞回线; (d)饱和磁化强度、翻转场和磁各向异性常数随Dy层厚度的变化关系

    Fig. 1.  (a) Schematic diagram of a Dy/Pt/[Co/Pt]3 stack; (b) optical image of the Hall device accompanied by a schematic measurement setup; (c) anomalous Hall loops for stacks with varying Dy layer thicknesses measured at I = 1 mA, and the inset presents the in-plane magnetic hysteresis loop for the stack with t = 7 nm; (d) dependence of Ms, Hsw, and Ku on Dy layer thickness.

    图 2  类阻尼(a)和类场(b)有效场的测量示意图; 一阶谐波电压(Vω)和二阶谐波电压(V2ω)随面内纵向扫描磁场HL(c)和横向扫描磁场HT(d)的变化关系

    Fig. 2.  Schematic measurement setups of damping-like (a) and field-like (b) effective fields; representative first (Vω) and second (V2ω) harmonic voltages as functions of in-plane longitudinal magnetic field HL (c) and transverse magnetic field HT (d).

    图 3  (a)平面霍尔电阻随方位角ϕ的变化关系; 平面霍尔效应修正的类阻尼有效场(b)和类场有效场(c)随正弦电流幅值I0的依赖关系

    Fig. 3.  (a) Dependence of the planar Hall resistance on the azimuthal angle ϕ for stacks with different Dy layer thicknesses; Calibrated damping-like (b) and field-like (c) effective fields against the amplitude of the input sinusoidal current by considering the planar Hall effect.

    图 4  类阻尼SOT效率(a)、类场SOT效率(b)和有效自旋霍尔角(c)随Dy层厚度的变化关系

    Fig. 4.  Damping-like SOT efficiency (a), field-like SOT efficiency (b), and effective spin Hall angle (c) as a function of Dy layer thickness.

    图 5  (a) t = 7 nm样品在不同面内辅助场Hx的电流驱动磁矩翻转回线; (b)不同Dy层厚度样品在Hx = +600 Oe的电流驱动磁矩翻转回线; (c)不同Dy层厚度样品的电流驱动磁矩翻转相图; (d) Hx = +600 Oe时Dy/Pt/[Co/Pt]3, Pt/[Co/Pt]3和Dy层中临界翻转电流密度以及翻转效率随Dy层厚度的变化关系

    Fig. 5.  (a) Current-driven magnetization switching loops for the stack with t = 7 nm under various in-plane bias magnetic fields; (b) current-driven magnetization switching loops for stacks with different Dy layer thicknesses under Hx = +600 Oe; (c) switching phase diagram for stacks with different Dy layer thicknesses; (d) dependence of the critical switching current density in the Dy/Pt/[Co/Pt]3, Pt/[Co/Pt]3 and Dy layers as well as the switching efficiency on Dy layer thickness under Hx = +600 Oe.

  • [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [2]

    Tudu B, Tiwari A 2017 Vacuum 146 329Google Scholar

    [3]

    Garello K, Avci C O, Miron I M, Baumgartner M, Ghosh A, Auffret S, Boulle O, Gaudin G, Gambardella P 2014 Appl. Phys. Lett. 105 212402Google Scholar

    [4]

    Resnati D, Goda A, Nicosia G, Miccoli C, Spinelli A S, Compagnoni C M 2017 IEEE Electron Device Lett. 38 461Google Scholar

    [5]

    Yu G Q 2018 Nat. Electronics. 1 496Google Scholar

    [6]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M 2018 IEEE Trans. Magn. 54 81

    [7]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [8]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611Google Scholar

    [9]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [10]

    Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L, Jiang W J 2022 Chin. Phys. Lett. 39 017501Google Scholar

    [11]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028Google Scholar

    [12]

    Li L Y, Chen L N, Liu R H, Du Y W 2020 Chin. Phys. B 29 117102Google Scholar

    [13]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [14]

    Pai C F, Ou Y, Henrique L, Vilela-Le~ao L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [15]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [16]

    Haney P M, Lee H W, Lee K J, Manchon A, Stiles M D 2013 Phys. Rev. B 87 174411Google Scholar

    [17]

    Rojas-Sánchez J C, Reyren N, Laczkowski P, Savero W, Attané J P, Deranlot C, Jamet M, George J M, Vila L, Jaffrès H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [18]

    Zhang W, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496Google Scholar

    [19]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601Google Scholar

    [20]

    Zhang C, Fukami S, Watanabe K, Ohkawara A, Gupta S D, Sato H, Matsukura F, Ohno H 2016 Appl. Phys. Lett. 109 192405Google Scholar

    [21]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [22]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K, Zhao W S 2020 Chin. Phys. B 29 078505Google Scholar

    [23]

    Lü W, Jia Z, Wang B, Lu Y, Luo X, Zhang B, Zeng Z, Liu Z 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [24]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [25]

    Wang F, Shi G Y, Kim K W, Park H J, Jang J G, Tan H R, Lin M, Liu Y K, Kim T, Yang D S, Zhao S S, Lee K, Yang S H, Soumyanarayanan A, Lee K J, Yang H 2024 Nat. Mater. 23 768Google Scholar

    [26]

    魏陆军, 李阳辉, 普勇 2024 物理学报 73 018501

    Wei L J, Li Y H, Pu Y 2024 Acta Phys. Sin. 73 018501

    [27]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [28]

    Liu Q B, Li J W, Zhu L J, Lin X, Xie X Y, Zhu L J 2022 Phys. Rev. Appl. 18 054079Google Scholar

    [29]

    Zhu L J, Ralph D C, Buhrman R A 2018 Phys. Rev. Appl. 10 031001Google Scholar

    [30]

    Reynolds N, Jadaun P, Heron J T, Jermain C L, Gibbons J, Collette R, Buhrman R A, Schlom D G, Ralph D C 2017 Phys. Rev. B 95 064412Google Scholar

    [31]

    Ueda K, Pai C F, Tan A J, Mann M, Beach G S D 2016 Appl. Phys. Lett. 108 232405Google Scholar

    [32]

    Wong Q Y, Murapaka C, Law W C, Gan W L, Lim G J, Lew W S 2019 Phys. Rev. Appl. 11 024057Google Scholar

    [33]

    Jin T L, Law W C, Kumar D, Luo F L, Wong Q Y, Lim G J, Wang X, Lew W S, Piramanayagam S N 2020 APL Mater. 8 111111Google Scholar

    [34]

    Li D, Li M R, Lai Y P, Zhang W, Liu X Y, Quan Z Y, Xu X H 2024 Appl. Phys. Lett. 125 152403Google Scholar

    [35]

    Takeuchi Y, Zhang C L, Okada A, Sato H, Fukami S, Ohno H 2018 Appl. Phys. Lett. 112 192408Google Scholar

    [36]

    Li D, Ma R, Cui B S, Yun J J, Quan Z Y, Zuo Y L, Xi L, Xu X H 2020 Appl. Surf. Sci. 513 145768Google Scholar

    [37]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [38]

    Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H 2014 Nat. Commun. 5 4655Google Scholar

    [39]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425Google Scholar

    [40]

    Li D, Chen S W, Zuo Y L, Yun J J, Cui B S, Wu K, Guo X B, Yang D Z, Wang J B, Xi L 2018 Sci. Rep. 8 12959Google Scholar

    [41]

    Wu D, Yu G Q, Chen C T, Razavi S A, Shao Q M, Li X, Zhao B C, Wong K L, He C L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 222401Google Scholar

    [42]

    Yu J W, Qiu X P, Legrand W, Yang H 2016 Appl. Phys. Lett. 109 042403Google Scholar

    [43]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [44]

    Wang X R, Meng A, Yao Y X, Lin F Y, Bai Y, Ning X B, Li B, Zhang Y, Nie T X, Shi S, Zhao W S 2024 Nano Lett. 24 6931Google Scholar

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, doi: 10.7498/aps.73.20231374
    [2] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转. 物理学报, doi: 10.7498/aps.73.20231836
    [3] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, doi: 10.7498/aps.72.20230901
    [4] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响. 物理学报, doi: 10.7498/aps.72.20222239
    [5] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, doi: 10.7498/aps.72.20222433
    [6] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运. 物理学报, doi: 10.7498/aps.70.20201737
    [7] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, doi: 10.7498/aps.68.20190927
    [8] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, doi: 10.7498/aps.67.20180216
    [9] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究. 物理学报, doi: 10.7498/aps.65.247502
    [10] 于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲. Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响. 物理学报, doi: 10.7498/aps.64.247504
    [11] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, doi: 10.7498/aps.64.197501
    [12] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, doi: 10.7498/aps.64.097501
    [13] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, doi: 10.7498/aps.63.217601
    [14] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究. 物理学报, doi: 10.7498/aps.62.137501
    [15] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究. 物理学报, doi: 10.7498/aps.61.167505
    [16] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, doi: 10.7498/aps.61.167504
    [17] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响. 物理学报, doi: 10.7498/aps.58.7977
    [18] 冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华. 利用FePt/Au多层膜结构制备垂直磁记录L10-FePt薄膜. 物理学报, doi: 10.7498/aps.58.3503
    [19] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, doi: 10.7498/aps.54.3862
    [20] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系. 物理学报, doi: 10.7498/aps.54.1841
计量
  • 文章访问数:  271
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-16
  • 修回日期:  2025-03-24
  • 上网日期:  2025-05-06

/

返回文章
返回